几何绕射理论(Geometrical Theory of Diffraction,GTD)模型能够精确描述高频区雷达目标的电磁散射机理。该文在分析雷达回波稀疏特性的基础上,将参数估计问题转化为压缩感知理论中的稀疏信号重构问题,据此提出了一种基于压缩感知的2维...几何绕射理论(Geometrical Theory of Diffraction,GTD)模型能够精确描述高频区雷达目标的电磁散射机理。该文在分析雷达回波稀疏特性的基础上,将参数估计问题转化为压缩感知理论中的稀疏信号重构问题,据此提出了一种基于压缩感知的2维GTD模型参数估计方法。该方法首先利用2维傅里叶变换成像确定目标散射中心的支撑区域,然后在支撑区域内对散射中心的GTD参数进行估计,最后利用聚类方法和最小二乘方法对估计结果进行修正。仿真和暗室测量数据实验结果表明,与现有方法相比,所提方法能有效改善模型参数的估计性能,且对提高散射中心类型参数的估计精度更为明显。展开更多
为有效利用全极化雷达高分辨距离像(High Resolution Range Profile,HRRP)的丰富特征信息和全极化样本中各单极化HRRP均对应于相同目标姿态的特性,提出一种基于多任务压缩感知的全极化雷达目标识别方法。该方法约束在不同极化字典中选...为有效利用全极化雷达高分辨距离像(High Resolution Range Profile,HRRP)的丰富特征信息和全极化样本中各单极化HRRP均对应于相同目标姿态的特性,提出一种基于多任务压缩感知的全极化雷达目标识别方法。该方法约束在不同极化字典中选择来自相同角域的字典原子对相应极化方式下的HRRP进行表示,可以有效利用不同极化HRRP之间的相关信息提高目标识别性能。基于电磁散射数据对所提出的方法进行了测试,实验结果证明了方法的有效性。展开更多
文摘几何绕射理论(Geometrical Theory of Diffraction,GTD)模型能够精确描述高频区雷达目标的电磁散射机理。该文在分析雷达回波稀疏特性的基础上,将参数估计问题转化为压缩感知理论中的稀疏信号重构问题,据此提出了一种基于压缩感知的2维GTD模型参数估计方法。该方法首先利用2维傅里叶变换成像确定目标散射中心的支撑区域,然后在支撑区域内对散射中心的GTD参数进行估计,最后利用聚类方法和最小二乘方法对估计结果进行修正。仿真和暗室测量数据实验结果表明,与现有方法相比,所提方法能有效改善模型参数的估计性能,且对提高散射中心类型参数的估计精度更为明显。
文摘为有效利用全极化雷达高分辨距离像(High Resolution Range Profile,HRRP)的丰富特征信息和全极化样本中各单极化HRRP均对应于相同目标姿态的特性,提出一种基于多任务压缩感知的全极化雷达目标识别方法。该方法约束在不同极化字典中选择来自相同角域的字典原子对相应极化方式下的HRRP进行表示,可以有效利用不同极化HRRP之间的相关信息提高目标识别性能。基于电磁散射数据对所提出的方法进行了测试,实验结果证明了方法的有效性。