利用三步法(热溶剂还原法,硅烷化和氨基功能化)制备了Fe3O4@SiO2-NH2磁性纳米复合材料用于水体中全氟化合物的萃取,结合超高效液相色谱-串联三重四极杆质谱(UPLC-MS/MS)技术,建立了水体中7种典型全氟化合物的检测方法。通过扫描电镜...利用三步法(热溶剂还原法,硅烷化和氨基功能化)制备了Fe3O4@SiO2-NH2磁性纳米复合材料用于水体中全氟化合物的萃取,结合超高效液相色谱-串联三重四极杆质谱(UPLC-MS/MS)技术,建立了水体中7种典型全氟化合物的检测方法。通过扫描电镜(SEM)、透射电镜(TEM)和傅立叶红外光谱(FT-IR)等手段对材料进行表征,详细研究了解析溶剂、解析溶剂体积、解析时间、吸附时间和p H值等因素对萃取效率的影响。结果表明:氨基被成功修饰在Fe3O4@SiO2纳米粒子的表面,Fe3O4@SiO2-NH2磁性纳米材料对目标全氟化合物有较好的萃取效果,在萃取时间为20 min,解析溶剂为3 m L×4含0.28%氨水的甲醇,解析时间为5 min,p H 5.0时,萃取效率最佳。在最优实验条件下,全氟化合物的检出限为0.2~0.5 ng/L,线性范围为1~500 ng/L。方法用于实际水体中目标全氟化合物的检测,样品的加标回收率不低于82.0%。展开更多
针对山区航道中布设虚拟航标基站缺乏指导方法的问题,从基站AIS信号覆盖的角度推导基站布设间距模型。首先,通过实地实验采集山区航道AIS信号场强,发现Egli模型总体上高估了山区航道中AIS信号衰减的速度,山体遮挡会造成AIS信号场强快速...针对山区航道中布设虚拟航标基站缺乏指导方法的问题,从基站AIS信号覆盖的角度推导基站布设间距模型。首先,通过实地实验采集山区航道AIS信号场强,发现Egli模型总体上高估了山区航道中AIS信号衰减的速度,山体遮挡会造成AIS信号场强快速下降。然后,基于实验数据,采用曲线拟合误差的方法修正Egli模型的参数,得到适合于山区航道的AIS信号场强评估的修订模型。修订模型对AIS信号场强的评估精度提高到94%以上,较Egli模型提高了55%以上。最后,基于修订模型,以-107 d B·m作为基站信号覆盖范围边界,推导山区航道的虚拟航标基站布设间距模型。该模型能保证船舶接收到基站信号的可靠性高于80%。展开更多
文摘利用三步法(热溶剂还原法,硅烷化和氨基功能化)制备了Fe3O4@SiO2-NH2磁性纳米复合材料用于水体中全氟化合物的萃取,结合超高效液相色谱-串联三重四极杆质谱(UPLC-MS/MS)技术,建立了水体中7种典型全氟化合物的检测方法。通过扫描电镜(SEM)、透射电镜(TEM)和傅立叶红外光谱(FT-IR)等手段对材料进行表征,详细研究了解析溶剂、解析溶剂体积、解析时间、吸附时间和p H值等因素对萃取效率的影响。结果表明:氨基被成功修饰在Fe3O4@SiO2纳米粒子的表面,Fe3O4@SiO2-NH2磁性纳米材料对目标全氟化合物有较好的萃取效果,在萃取时间为20 min,解析溶剂为3 m L×4含0.28%氨水的甲醇,解析时间为5 min,p H 5.0时,萃取效率最佳。在最优实验条件下,全氟化合物的检出限为0.2~0.5 ng/L,线性范围为1~500 ng/L。方法用于实际水体中目标全氟化合物的检测,样品的加标回收率不低于82.0%。
文摘针对山区航道中布设虚拟航标基站缺乏指导方法的问题,从基站AIS信号覆盖的角度推导基站布设间距模型。首先,通过实地实验采集山区航道AIS信号场强,发现Egli模型总体上高估了山区航道中AIS信号衰减的速度,山体遮挡会造成AIS信号场强快速下降。然后,基于实验数据,采用曲线拟合误差的方法修正Egli模型的参数,得到适合于山区航道的AIS信号场强评估的修订模型。修订模型对AIS信号场强的评估精度提高到94%以上,较Egli模型提高了55%以上。最后,基于修订模型,以-107 d B·m作为基站信号覆盖范围边界,推导山区航道的虚拟航标基站布设间距模型。该模型能保证船舶接收到基站信号的可靠性高于80%。