期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
3
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于MICS-CoTNet的黑木耳品质分类方法
被引量:
3
1
作者
徐艳蕾
王琦
+4 位作者
翟钰婷
高志远
邢路
丛雪
周阳
《农业工程学报》
EI
CAS
CSCD
北大核心
2023年第5期146-155,共10页
针对传统黑木耳品质分类效率低,识别准确率不佳等问题,提出一种基于卷积神经网络和Transformer相结合的黑木耳图像品质分类方法。该研究以CoTNet模型为基础网络,设计了MICS-CoTNet黑木耳品质分类网络模型。首先,重新规划CoTNet模型主干...
针对传统黑木耳品质分类效率低,识别准确率不佳等问题,提出一种基于卷积神经网络和Transformer相结合的黑木耳图像品质分类方法。该研究以CoTNet模型为基础网络,设计了MICS-CoTNet黑木耳品质分类网络模型。首先,重新规划CoTNet模型主干特征提取模块的迭代次数,降低模型的计算冗余;其次,提出坐标归一化注意力机制以增强黑木耳图像局部关键特征权重,抑制主体特征干扰;最后,引入MobileNetV2模型中特征提取模块Inverted Block,并优化CoTNet模型核心模块CoT block,增强模型对黑木耳数据的特征提取能力。将MICS-CoTNet模型与EfficientNetV2、NfNet等12种模型进行对比,结果表明,综合模型准确性和轻量性等方面,MICS-CoTNet模型表现最佳。其中,MICS-CoTNet模型在干黑木耳数据中识别准确率可达98.45%,相较标准CoTNet提升5.22个百分点;在鲜黑木耳数据中识别准确率可达98.89%,相较标准CoTNet提升2.60个百分点。MICS-CoTNet模型占用内存为30.98M,相对于原CoTNet模型减少96.57M。将MICS-CoTNet模型部署到Jetson TX2 NX中,实时推理速度为18帧/s。该研究提出的MICS-CoTNet黑木耳品质分类模型识别准确率高,运算速度快,为黑木耳实时品质分级的实际应用提供了理论基础及技术支持。
展开更多
关键词
计算机视觉
深度学习
品质分级
注意力机制
特征提取
在线阅读
下载PDF
职称材料
基于改进K均值特征点聚类算法的作物行检测
被引量:
13
2
作者
孟笑天
徐艳蕾
+2 位作者
王新东
何润
翟钰婷
《农机化研究》
北大核心
2020年第8期26-30,共5页
精准施药是现代精准农业发展不可或缺的一部分,而准确地提取作物行是进行精准施药的关键环节。为此,以苗期的玉米为研究对象,提出一种基于改进K均值特征点聚类算法的作物行检测方法。该方法根据距离函数最值关系求出最佳聚类数目,再依...
精准施药是现代精准农业发展不可或缺的一部分,而准确地提取作物行是进行精准施药的关键环节。为此,以苗期的玉米为研究对象,提出一种基于改进K均值特征点聚类算法的作物行检测方法。该方法根据距离函数最值关系求出最佳聚类数目,再依据点密度大小和邻域半径确定初始聚类中心,减少了迭代次数,提高了算法的执行效率和划分效果。首先,采用改进的超绿法(1.27G-R-B)进行灰度化和Otsu方法进行二值化,得到作物行的二值图像;然后,利用左右边缘中间线算法提取作物行特征点;最后,采用改进K均值算法和最小二乘法对作物行中心线特征点进行聚类和直线拟合。试验数据表明:提出的改进K均值特征点聚类算法识别效果好,精确度高,可为精准施药提供理论依据。
展开更多
关键词
作物行检测
精准施药
改进K均值聚类
最小二乘法
在线阅读
下载PDF
职称材料
基于BAS-PID控制的精准变量施药系统仿真与试验
被引量:
10
3
作者
王新东
徐艳蕾
+2 位作者
孟笑天
何润
翟钰婷
《中国农机化学报》
北大核心
2020年第3期62-66,共5页
精准变量施药技术是精准农业的重要内容之一,为解决当前常用的变量施药方式存在的控制精度低、超调量大等不足,提出将天牛须搜索(Beetle Antennae Search,BAS)算法与常规PID控制结合形成BAS-PID控制算法,用于变量施药系统控制。首先建...
精准变量施药技术是精准农业的重要内容之一,为解决当前常用的变量施药方式存在的控制精度低、超调量大等不足,提出将天牛须搜索(Beetle Antennae Search,BAS)算法与常规PID控制结合形成BAS-PID控制算法,用于变量施药系统控制。首先建立施药控制系统机理模型并基于Matlab平台进行软件仿真,仿真试验结果表明,BAS-PID算法的超调量为0.024 1,绝对误差为1.14%,均低于常规PID和模糊PID,控制效果更好。在吉林农业大学试验田进行了田间施药试验,根据试验数据分析,BAS-PID、模糊PID以及常规PID的平均施药误差分别为0.016 L/min、0.020 L/min、0.238 L/min,平均超调量分别为0.006 L/min、0.016 L/min、0.238 L/min。BAS-PID控制算法的施药误差仅在0.01~0.02 L/min内,误差范围小,总体而言,该算法的施药误差和平均超调量都低于模糊PID和常规PID,系统应用效果好。试验结果表明:本文提出的BAS-PID算法提高了PID算法的参数适用性,施药控制精度高,超调量小,改善了变量施药系统的施药效果,可为推动精准变量施药技术的发展提供新的技术方案。
展开更多
关键词
变量施药
PID
天牛须搜索
控制精度
在线阅读
下载PDF
职称材料
题名
基于MICS-CoTNet的黑木耳品质分类方法
被引量:
3
1
作者
徐艳蕾
王琦
翟钰婷
高志远
邢路
丛雪
周阳
机构
吉林农业大学信息技术学院
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2023年第5期146-155,共10页
基金
吉林省科技发展计划重点研发项目(20230202035NC)
长春市科技局重点科技攻关项目(21ZGN28)。
文摘
针对传统黑木耳品质分类效率低,识别准确率不佳等问题,提出一种基于卷积神经网络和Transformer相结合的黑木耳图像品质分类方法。该研究以CoTNet模型为基础网络,设计了MICS-CoTNet黑木耳品质分类网络模型。首先,重新规划CoTNet模型主干特征提取模块的迭代次数,降低模型的计算冗余;其次,提出坐标归一化注意力机制以增强黑木耳图像局部关键特征权重,抑制主体特征干扰;最后,引入MobileNetV2模型中特征提取模块Inverted Block,并优化CoTNet模型核心模块CoT block,增强模型对黑木耳数据的特征提取能力。将MICS-CoTNet模型与EfficientNetV2、NfNet等12种模型进行对比,结果表明,综合模型准确性和轻量性等方面,MICS-CoTNet模型表现最佳。其中,MICS-CoTNet模型在干黑木耳数据中识别准确率可达98.45%,相较标准CoTNet提升5.22个百分点;在鲜黑木耳数据中识别准确率可达98.89%,相较标准CoTNet提升2.60个百分点。MICS-CoTNet模型占用内存为30.98M,相对于原CoTNet模型减少96.57M。将MICS-CoTNet模型部署到Jetson TX2 NX中,实时推理速度为18帧/s。该研究提出的MICS-CoTNet黑木耳品质分类模型识别准确率高,运算速度快,为黑木耳实时品质分级的实际应用提供了理论基础及技术支持。
关键词
计算机视觉
深度学习
品质分级
注意力机制
特征提取
Keywords
computer vision
deep learning
quality grading
attention mechanism
feature extraction
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于改进K均值特征点聚类算法的作物行检测
被引量:
13
2
作者
孟笑天
徐艳蕾
王新东
何润
翟钰婷
机构
吉林农业大学信息技术学院
吉林大学工程仿生教育部重点实验室
出处
《农机化研究》
北大核心
2020年第8期26-30,共5页
基金
国家自然科学基金项目(31801753)
文摘
精准施药是现代精准农业发展不可或缺的一部分,而准确地提取作物行是进行精准施药的关键环节。为此,以苗期的玉米为研究对象,提出一种基于改进K均值特征点聚类算法的作物行检测方法。该方法根据距离函数最值关系求出最佳聚类数目,再依据点密度大小和邻域半径确定初始聚类中心,减少了迭代次数,提高了算法的执行效率和划分效果。首先,采用改进的超绿法(1.27G-R-B)进行灰度化和Otsu方法进行二值化,得到作物行的二值图像;然后,利用左右边缘中间线算法提取作物行特征点;最后,采用改进K均值算法和最小二乘法对作物行中心线特征点进行聚类和直线拟合。试验数据表明:提出的改进K均值特征点聚类算法识别效果好,精确度高,可为精准施药提供理论依据。
关键词
作物行检测
精准施药
改进K均值聚类
最小二乘法
Keywords
crop line detection
precise spraying
improved K-means clustering
least squares method
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
S48 [农业科学—农药学]
在线阅读
下载PDF
职称材料
题名
基于BAS-PID控制的精准变量施药系统仿真与试验
被引量:
10
3
作者
王新东
徐艳蕾
孟笑天
何润
翟钰婷
机构
吉林农业大学信息技术学院
吉林大学工程仿生教育部重点实验室
出处
《中国农机化学报》
北大核心
2020年第3期62-66,共5页
基金
国家自然科学基金项目(31801753)。
文摘
精准变量施药技术是精准农业的重要内容之一,为解决当前常用的变量施药方式存在的控制精度低、超调量大等不足,提出将天牛须搜索(Beetle Antennae Search,BAS)算法与常规PID控制结合形成BAS-PID控制算法,用于变量施药系统控制。首先建立施药控制系统机理模型并基于Matlab平台进行软件仿真,仿真试验结果表明,BAS-PID算法的超调量为0.024 1,绝对误差为1.14%,均低于常规PID和模糊PID,控制效果更好。在吉林农业大学试验田进行了田间施药试验,根据试验数据分析,BAS-PID、模糊PID以及常规PID的平均施药误差分别为0.016 L/min、0.020 L/min、0.238 L/min,平均超调量分别为0.006 L/min、0.016 L/min、0.238 L/min。BAS-PID控制算法的施药误差仅在0.01~0.02 L/min内,误差范围小,总体而言,该算法的施药误差和平均超调量都低于模糊PID和常规PID,系统应用效果好。试验结果表明:本文提出的BAS-PID算法提高了PID算法的参数适用性,施药控制精度高,超调量小,改善了变量施药系统的施药效果,可为推动精准变量施药技术的发展提供新的技术方案。
关键词
变量施药
PID
天牛须搜索
控制精度
Keywords
variable spraying
PID
beetle antennae search
control precision
分类号
S49 [农业科学—植物保护]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于MICS-CoTNet的黑木耳品质分类方法
徐艳蕾
王琦
翟钰婷
高志远
邢路
丛雪
周阳
《农业工程学报》
EI
CAS
CSCD
北大核心
2023
3
在线阅读
下载PDF
职称材料
2
基于改进K均值特征点聚类算法的作物行检测
孟笑天
徐艳蕾
王新东
何润
翟钰婷
《农机化研究》
北大核心
2020
13
在线阅读
下载PDF
职称材料
3
基于BAS-PID控制的精准变量施药系统仿真与试验
王新东
徐艳蕾
孟笑天
何润
翟钰婷
《中国农机化学报》
北大核心
2020
10
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部