利用保加利亚乳杆菌和嗜热链球菌复合发酵剂对乳蛋白浓缩物(milk protein concentrate,MPC)进行发酵,研究了不同乳糖浓度下MPC的发酵特性。结果表明,乳糖浓度影响MPC发酵进入稳定期的时间与pH值,随着乳糖浓度的升高,MPC发酵物的最终pH...利用保加利亚乳杆菌和嗜热链球菌复合发酵剂对乳蛋白浓缩物(milk protein concentrate,MPC)进行发酵,研究了不同乳糖浓度下MPC的发酵特性。结果表明,乳糖浓度影响MPC发酵进入稳定期的时间与pH值,随着乳糖浓度的升高,MPC发酵物的最终pH值下降(pH值范围4.14~4.59);微流变学研究表明,随乳糖浓度升高,MPC发酵物的宏观黏性因子减小,而固液平衡值和流动性指数增大;质构特性研究表明,MPC发酵物的持水力随乳糖浓度升高而逐渐升高,胶着性、弹性则呈现先增大后减小的趋势,而硬度、黏力不受影响;气相色谱-质谱联用分析结果显示,酸类化合物和酮类化合物是MPC发酵物中的主要挥发性物质,随乳糖浓度的增加,酸类化合物含量减少,而2,3-丁二酮、3-羟基-2-丁酮等乳糖代谢物的含量增加。本研究结果旨在为进一步了解MPC的发酵特性并拓宽MPC在不同发酵乳制品中的应用提供基础数据。展开更多
研究不同乳蛋白组分对牛乳酶凝乳特性的影响,在脱脂牛乳中添加乳清蛋白浓缩物(whey protein concentrate,WPC)、κ-酪蛋白(κ-casein,κ-CN)、β-乳球蛋白(β-lactoglobulin,β-Lg_A和β-Lg_B)。结果表明:这些乳蛋白组分可以缩短牛乳的...研究不同乳蛋白组分对牛乳酶凝乳特性的影响,在脱脂牛乳中添加乳清蛋白浓缩物(whey protein concentrate,WPC)、κ-酪蛋白(κ-casein,κ-CN)、β-乳球蛋白(β-lactoglobulin,β-Lg_A和β-Lg_B)。结果表明:这些乳蛋白组分可以缩短牛乳的酶凝乳时间,而且增加凝乳后的样品黏度,凝乳样品微观结构更加紧密;而添加α-乳白蛋白(α-lactalbumin,α-La)、α-酪蛋白(α-casein,α-CN)、β-酪蛋白(β-casein,β-CN)和总酪蛋白(casein,CN)对凝乳的形成具有抑制作用,凝乳样品微观结构较疏松。采用动态光散射法测定酶凝乳过程中酪蛋白胶束分子粒径的分布情况,结果表明,酪蛋白溶液中添加WPC、κ-CN、β-Lg_A和β-Lg_B后,分子半径分布发生变化,蛋白分子趋于聚集。选择酶凝乳差异明显的原料乳样品进行双向电泳与质谱鉴定,结果表明,与牛乳的酶凝乳特性相关的差异蛋白大多是影响乳腺细胞代谢的微量生物活性蛋白质。展开更多
文摘利用保加利亚乳杆菌和嗜热链球菌复合发酵剂对乳蛋白浓缩物(milk protein concentrate,MPC)进行发酵,研究了不同乳糖浓度下MPC的发酵特性。结果表明,乳糖浓度影响MPC发酵进入稳定期的时间与pH值,随着乳糖浓度的升高,MPC发酵物的最终pH值下降(pH值范围4.14~4.59);微流变学研究表明,随乳糖浓度升高,MPC发酵物的宏观黏性因子减小,而固液平衡值和流动性指数增大;质构特性研究表明,MPC发酵物的持水力随乳糖浓度升高而逐渐升高,胶着性、弹性则呈现先增大后减小的趋势,而硬度、黏力不受影响;气相色谱-质谱联用分析结果显示,酸类化合物和酮类化合物是MPC发酵物中的主要挥发性物质,随乳糖浓度的增加,酸类化合物含量减少,而2,3-丁二酮、3-羟基-2-丁酮等乳糖代谢物的含量增加。本研究结果旨在为进一步了解MPC的发酵特性并拓宽MPC在不同发酵乳制品中的应用提供基础数据。
文摘研究不同乳蛋白组分对牛乳酶凝乳特性的影响,在脱脂牛乳中添加乳清蛋白浓缩物(whey protein concentrate,WPC)、κ-酪蛋白(κ-casein,κ-CN)、β-乳球蛋白(β-lactoglobulin,β-Lg_A和β-Lg_B)。结果表明:这些乳蛋白组分可以缩短牛乳的酶凝乳时间,而且增加凝乳后的样品黏度,凝乳样品微观结构更加紧密;而添加α-乳白蛋白(α-lactalbumin,α-La)、α-酪蛋白(α-casein,α-CN)、β-酪蛋白(β-casein,β-CN)和总酪蛋白(casein,CN)对凝乳的形成具有抑制作用,凝乳样品微观结构较疏松。采用动态光散射法测定酶凝乳过程中酪蛋白胶束分子粒径的分布情况,结果表明,酪蛋白溶液中添加WPC、κ-CN、β-Lg_A和β-Lg_B后,分子半径分布发生变化,蛋白分子趋于聚集。选择酶凝乳差异明显的原料乳样品进行双向电泳与质谱鉴定,结果表明,与牛乳的酶凝乳特性相关的差异蛋白大多是影响乳腺细胞代谢的微量生物活性蛋白质。