期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
高超目标强跟踪CKF自适应交互多模型跟踪算法
被引量:
1
1
作者
罗亚伦
廖育荣
+1 位作者
李兆铭
倪淑燕
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2024年第7期2272-2283,共12页
高超目标运动状态复杂且具有高机动性,传统的交互多模型(IMM)跟踪精度低、收敛速度慢,基于此,提出了一种基于多重渐消因子的强跟踪容积卡尔曼滤波(CKF)自适应交互多模型(AIMM)跟踪算法。以IMM-CKF算法为基础,通过对CKF算法的结构进行分...
高超目标运动状态复杂且具有高机动性,传统的交互多模型(IMM)跟踪精度低、收敛速度慢,基于此,提出了一种基于多重渐消因子的强跟踪容积卡尔曼滤波(CKF)自适应交互多模型(AIMM)跟踪算法。以IMM-CKF算法为基础,通过对CKF算法的结构进行分析,在时间更新和量测更新的协方差矩阵中引入强跟踪算法的渐消因子,在线实时调整滤波增益,减小模型不匹配导致的滤波精度下降;在IMM的模型集中选择Singer模型、“当前”统计模型和Jerk模型,并针对模型扩维导致CKF算法中无法Cholesky分解的问题引入奇异值分解(SVD)算法;对IMM算法中马尔可夫矩阵提出自适应算法,通过模型似然函数值对转移概率进行自适应修正,增强匹配模型所占比例。仿真结果表明:所提算法跟踪收敛速度提高了约37.5%,跟踪精度提高了16.51%。
展开更多
关键词
高超目标
容积卡尔曼滤波
强跟踪滤波
渐消因子
自适应交互多模型
在线阅读
下载PDF
职称材料
题名
高超目标强跟踪CKF自适应交互多模型跟踪算法
被引量:
1
1
作者
罗亚伦
廖育荣
李兆铭
倪淑燕
机构
航天工程大学研究生院
航天工程大学电子与光学工程系
出处
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2024年第7期2272-2283,共12页
基金
国家自然科学基金(61805283)。
文摘
高超目标运动状态复杂且具有高机动性,传统的交互多模型(IMM)跟踪精度低、收敛速度慢,基于此,提出了一种基于多重渐消因子的强跟踪容积卡尔曼滤波(CKF)自适应交互多模型(AIMM)跟踪算法。以IMM-CKF算法为基础,通过对CKF算法的结构进行分析,在时间更新和量测更新的协方差矩阵中引入强跟踪算法的渐消因子,在线实时调整滤波增益,减小模型不匹配导致的滤波精度下降;在IMM的模型集中选择Singer模型、“当前”统计模型和Jerk模型,并针对模型扩维导致CKF算法中无法Cholesky分解的问题引入奇异值分解(SVD)算法;对IMM算法中马尔可夫矩阵提出自适应算法,通过模型似然函数值对转移概率进行自适应修正,增强匹配模型所占比例。仿真结果表明:所提算法跟踪收敛速度提高了约37.5%,跟踪精度提高了16.51%。
关键词
高超目标
容积卡尔曼滤波
强跟踪滤波
渐消因子
自适应交互多模型
Keywords
hypersonic target
cubature Kalman filter
strong tracking filtering
fading factor
adaptive interactive multiple model
分类号
V249.4 [航空宇航科学与技术—飞行器设计]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
高超目标强跟踪CKF自适应交互多模型跟踪算法
罗亚伦
廖育荣
李兆铭
倪淑燕
《北京航空航天大学学报》
EI
CAS
CSCD
北大核心
2024
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部