期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
强噪声环境下基于MSDCNN的滚动轴承故障诊断方法
1
作者
雷春丽
史佳硕
+3 位作者
马淑珍
缪成翔
万会元
李建华
《北京航空航天大学学报》
北大核心
2025年第9期2906-2915,共10页
针对传统基于深度学习的轴承故障诊断方法存在抗噪性能差、计算复杂度高和泛化性能不足的问题,提出了一种基于多尺度动态卷积神经网络(MSDCNN)的滚动轴承故障诊断方法。采用傅里叶变换将滚动轴承一维振动信号转换到频域进行表示,并通过...
针对传统基于深度学习的轴承故障诊断方法存在抗噪性能差、计算复杂度高和泛化性能不足的问题,提出了一种基于多尺度动态卷积神经网络(MSDCNN)的滚动轴承故障诊断方法。采用傅里叶变换将滚动轴承一维振动信号转换到频域进行表示,并通过宽卷积核进一步提取特征;提出一种多尺度动态卷积结构,利用改进的通道注意力机制,对不同大小的卷积核提取的特征信息赋予不同的权重;设计一种自校准空间注意力机制(SCSAM),将提取的特征信息输入到空间注意力机制中,捕获不同区域的重要程度;通过小卷积核进一步提取特征,利用Softmax分类器进行故障类别分类。使用2种不同数据集验证所提模型的故障诊断性能,实验结果表明:与多尺度深度卷积神经网络(MSD-CNN)、宽卷积核卷积神经网络(WKCNN)等智能模型相比,所提模型在强噪声背景下具有更高的分类精度、更好的泛化能力和更强的鲁棒性。
展开更多
关键词
故障诊断
傅里叶变换
多尺度动态卷积
注意力机制
滚动轴承
在线阅读
下载PDF
职称材料
题名
强噪声环境下基于MSDCNN的滚动轴承故障诊断方法
1
作者
雷春丽
史佳硕
马淑珍
缪成翔
万会元
李建华
机构
兰州理工大学机电工程学院
云南文山铝业有限公司
出处
《北京航空航天大学学报》
北大核心
2025年第9期2906-2915,共10页
基金
国家自然科学基金(51465035)
甘肃省自然科学基金(20JR5RA466)
+1 种基金
甘肃省教育厅研究生“创新之星”项目(2023CXZX-411)
兰州理工大学红柳一流学科建设项目。
文摘
针对传统基于深度学习的轴承故障诊断方法存在抗噪性能差、计算复杂度高和泛化性能不足的问题,提出了一种基于多尺度动态卷积神经网络(MSDCNN)的滚动轴承故障诊断方法。采用傅里叶变换将滚动轴承一维振动信号转换到频域进行表示,并通过宽卷积核进一步提取特征;提出一种多尺度动态卷积结构,利用改进的通道注意力机制,对不同大小的卷积核提取的特征信息赋予不同的权重;设计一种自校准空间注意力机制(SCSAM),将提取的特征信息输入到空间注意力机制中,捕获不同区域的重要程度;通过小卷积核进一步提取特征,利用Softmax分类器进行故障类别分类。使用2种不同数据集验证所提模型的故障诊断性能,实验结果表明:与多尺度深度卷积神经网络(MSD-CNN)、宽卷积核卷积神经网络(WKCNN)等智能模型相比,所提模型在强噪声背景下具有更高的分类精度、更好的泛化能力和更强的鲁棒性。
关键词
故障诊断
傅里叶变换
多尺度动态卷积
注意力机制
滚动轴承
Keywords
fault diagnosis
Fourier transform
multi-scale dynamic convolution
attention mechanism
rolling bearings
分类号
TH133.33 [机械工程—机械制造及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
强噪声环境下基于MSDCNN的滚动轴承故障诊断方法
雷春丽
史佳硕
马淑珍
缪成翔
万会元
李建华
《北京航空航天大学学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部