Zn1-xMnxO (x = 0.0005, 0.001, 0.005, 0.01, 0.02) nanocrystals are synthesized by using a wet chemical process. The coordination environment of Mn is characterized by X-ray photoelectron spectroscopy, Raman spectrosc...Zn1-xMnxO (x = 0.0005, 0.001, 0.005, 0.01, 0.02) nanocrystals are synthesized by using a wet chemical process. The coordination environment of Mn is characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, and its X-ray absorption fine structure. It is found that the solubility of substitutional Mn in a ZnO lattice is very low, which is less than 0.4%. Mn ions first dissolve into the substitutional sites in the ZnO lattice, thereby forming Mn2+O4 tetrahedral coordination when x ≤ 0.001, then entering into the interstitial sites and forming Mn3+O6 octahedral coordination when x ≥ 0.005. All the samples exhibit paramagnetic behaviors at room temperature, and antiferromagnetic coupling can be observed below 100 K.展开更多
Mn-doped ZnO nanocrystals are synthesized by a wet chemical route and treated in H2/Ar atmosphere with different H2/Ar ratios. It is found that hydrogen annealing could change the coordination environment of Mn in ZnO...Mn-doped ZnO nanocrystals are synthesized by a wet chemical route and treated in H2/Ar atmosphere with different H2/Ar ratios. It is found that hydrogen annealing could change the coordination environment of Mn in ZnO lattice and manipulate the magnetic properties of Mn-doped ZnO. Mn ions initially enter into interstitial sites and a Mn3+ 06 octahedral coordination is produced in the prepared Mn-doped ZnO sample, in which the nearest neighbor Mn3+ and 02 ions could form a Mn3+-O2--Mn3+ complex. After H2 annealing, interstitial Mn ions can substitute for Zn to generate the Mn2+O4 tetrahedral coordination in the nanocrystals, in which neighboring Mn2+ ions and H atoms could form a Mn2+-O2--Mn2+ complex and Mn-H-Mn bridge structure. The magnetic measurement of the as-prepared sample shows room temperature paramagnetic behavior due to the Mn3+-O2--Mn3+ complex, while the annealed samples exhibit their ferromagnetism, which originates from the Mn-H-Mn bridge structure and the Mn-Mn exchange interaction in the Mn2+-O2--Mn2+ complex.展开更多
基金supported by Australian Research Council(ARC)(LP120200432 and DP140104062)Baosteel-Australia joint research and development center(Baosteel Grant no.BA14006)the Commonwealth of Australia through the Automotive Australia 2020 Coope rative Research Centre(Auto CRC)
基金Project supported by the National Basic Research Program of China (Grant No.013CB934001)the National Natural Science Foundation of China (Grant No.51272015)
文摘Zn1-xMnxO (x = 0.0005, 0.001, 0.005, 0.01, 0.02) nanocrystals are synthesized by using a wet chemical process. The coordination environment of Mn is characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, and its X-ray absorption fine structure. It is found that the solubility of substitutional Mn in a ZnO lattice is very low, which is less than 0.4%. Mn ions first dissolve into the substitutional sites in the ZnO lattice, thereby forming Mn2+O4 tetrahedral coordination when x ≤ 0.001, then entering into the interstitial sites and forming Mn3+O6 octahedral coordination when x ≥ 0.005. All the samples exhibit paramagnetic behaviors at room temperature, and antiferromagnetic coupling can be observed below 100 K.
基金supported by the National Basic Research Program of China(Grant No.2013CB934001)the National Natural Science Foundation of China(Grant Nos.51072012 and 51272015)
文摘Mn-doped ZnO nanocrystals are synthesized by a wet chemical route and treated in H2/Ar atmosphere with different H2/Ar ratios. It is found that hydrogen annealing could change the coordination environment of Mn in ZnO lattice and manipulate the magnetic properties of Mn-doped ZnO. Mn ions initially enter into interstitial sites and a Mn3+ 06 octahedral coordination is produced in the prepared Mn-doped ZnO sample, in which the nearest neighbor Mn3+ and 02 ions could form a Mn3+-O2--Mn3+ complex. After H2 annealing, interstitial Mn ions can substitute for Zn to generate the Mn2+O4 tetrahedral coordination in the nanocrystals, in which neighboring Mn2+ ions and H atoms could form a Mn2+-O2--Mn2+ complex and Mn-H-Mn bridge structure. The magnetic measurement of the as-prepared sample shows room temperature paramagnetic behavior due to the Mn3+-O2--Mn3+ complex, while the annealed samples exhibit their ferromagnetism, which originates from the Mn-H-Mn bridge structure and the Mn-Mn exchange interaction in the Mn2+-O2--Mn2+ complex.