期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于位串行卷积神经网络加速器的运动想象脑电信号识别系统
1
作者
程筱舒
王忆文
+2 位作者
娄鸿飞
丁玮然
李平
《电子科技大学学报》
北大核心
2025年第3期321-332,共12页
准确识别运动想象脑电信号是神经科学和生物医学工程领域的重要挑战。设计了基于位串行卷积神经网络加速器的脑电信号识别系统,充分利用其小体积、低能耗和高实时性的优势。从软件层面,介绍了脑电数据的预处理、特征提取及分类过程,并...
准确识别运动想象脑电信号是神经科学和生物医学工程领域的重要挑战。设计了基于位串行卷积神经网络加速器的脑电信号识别系统,充分利用其小体积、低能耗和高实时性的优势。从软件层面,介绍了脑电数据的预处理、特征提取及分类过程,并采用格拉姆角场转换将一维信号映射为二维特征图供网络处理。在硬件层面,提出了列暂存数据流和固定乘数原位串行乘法器等方法,在FPGA上实现了位串行卷积神经网络加速器的原型验证。实验表明,基于位串行LeNet-5加速器的FPGA实现对BCI竞赛Ⅳ数据集2a和2b的分类平均准确率分别达到95.68%和97.32%,kappa值分别为0.942和0.946,展现出的优异性为运动想象脑电信号识别的高效实现提供了思路。
展开更多
关键词
脑机接口
运动想象
卷积神经网络
硬件加速器
格拉姆角场
在线阅读
下载PDF
职称材料
题名
基于位串行卷积神经网络加速器的运动想象脑电信号识别系统
1
作者
程筱舒
王忆文
娄鸿飞
丁玮然
李平
机构
电子科技大学集成电路科学与工程学院(示范性微电子学院)
出处
《电子科技大学学报》
北大核心
2025年第3期321-332,共12页
文摘
准确识别运动想象脑电信号是神经科学和生物医学工程领域的重要挑战。设计了基于位串行卷积神经网络加速器的脑电信号识别系统,充分利用其小体积、低能耗和高实时性的优势。从软件层面,介绍了脑电数据的预处理、特征提取及分类过程,并采用格拉姆角场转换将一维信号映射为二维特征图供网络处理。在硬件层面,提出了列暂存数据流和固定乘数原位串行乘法器等方法,在FPGA上实现了位串行卷积神经网络加速器的原型验证。实验表明,基于位串行LeNet-5加速器的FPGA实现对BCI竞赛Ⅳ数据集2a和2b的分类平均准确率分别达到95.68%和97.32%,kappa值分别为0.942和0.946,展现出的优异性为运动想象脑电信号识别的高效实现提供了思路。
关键词
脑机接口
运动想象
卷积神经网络
硬件加速器
格拉姆角场
Keywords
brain computer interface
motor imagery
convolutional neural network
hardware accelerator
Gramian angular field
分类号
TN4 [电子电信—微电子学与固体电子学]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于位串行卷积神经网络加速器的运动想象脑电信号识别系统
程筱舒
王忆文
娄鸿飞
丁玮然
李平
《电子科技大学学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部