针对煤岩体水力压裂诱发波形到时拾取不准、裂缝定位效果差的问题,研究提出了STA/LTA与AIC联合到时拾取方法及单纯形定位方法。在搭建软件总体架构的基础上,采用python言语与Visual Studio Code编辑器,将波形到时拾取、震源定位算法及...针对煤岩体水力压裂诱发波形到时拾取不准、裂缝定位效果差的问题,研究提出了STA/LTA与AIC联合到时拾取方法及单纯形定位方法。在搭建软件总体架构的基础上,采用python言语与Visual Studio Code编辑器,将波形到时拾取、震源定位算法及相应功能程序化,设计开发了煤矿煤岩体水力压裂裂缝微震监测软件。在实验室内开展原煤真三轴水力压裂实验,将采集的数据输入软件,进行波形到时拾取与破裂源定位,验证该软件的可靠性与先进性。结果表明:该软件可拾取波形的精确到时,进行破裂定位,达到了刻画煤岩体水压裂缝空间形态的目的,这对于现场水力压裂裂缝监测及优化设计压裂方案具有重要意义。展开更多
Silicon films were grown on aluminium-coated glass by inductively coupled plasma CVD at room temperature using a mixture of SiH4 and H2 as the source gas. The microstructure of the films was evaluated using Raman spec...Silicon films were grown on aluminium-coated glass by inductively coupled plasma CVD at room temperature using a mixture of SiH4 and H2 as the source gas. The microstructure of the films was evaluated using Raman spectroscopy, scanning electron microscopy and atomic force microscopy. It was found that the films are composed of columnar grains and their surfaces show a random and uniform distribution of silicon nanocones. Such a microstructure is highly advantageous to the application of the films in solar cells and electron emission devices. Field electron emission measurement of the films demonstrated that the threshold field strength is as low as -9.8V/μm and the electron emission characteristic is reproducible. In addition, a mechanism is suggested for the columnar growth of crystalline silicon films on aluminium-coated glass at room temperature.展开更多
文摘针对煤岩体水力压裂诱发波形到时拾取不准、裂缝定位效果差的问题,研究提出了STA/LTA与AIC联合到时拾取方法及单纯形定位方法。在搭建软件总体架构的基础上,采用python言语与Visual Studio Code编辑器,将波形到时拾取、震源定位算法及相应功能程序化,设计开发了煤矿煤岩体水力压裂裂缝微震监测软件。在实验室内开展原煤真三轴水力压裂实验,将采集的数据输入软件,进行波形到时拾取与破裂源定位,验证该软件的可靠性与先进性。结果表明:该软件可拾取波形的精确到时,进行破裂定位,达到了刻画煤岩体水压裂缝空间形态的目的,这对于现场水力压裂裂缝监测及优化设计压裂方案具有重要意义。
基金supported by the National Natural Science Foundation of China (Grant No 60776009)
文摘Silicon films were grown on aluminium-coated glass by inductively coupled plasma CVD at room temperature using a mixture of SiH4 and H2 as the source gas. The microstructure of the films was evaluated using Raman spectroscopy, scanning electron microscopy and atomic force microscopy. It was found that the films are composed of columnar grains and their surfaces show a random and uniform distribution of silicon nanocones. Such a microstructure is highly advantageous to the application of the films in solar cells and electron emission devices. Field electron emission measurement of the films demonstrated that the threshold field strength is as low as -9.8V/μm and the electron emission characteristic is reproducible. In addition, a mechanism is suggested for the columnar growth of crystalline silicon films on aluminium-coated glass at room temperature.