期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于融合语义信息的上下文感知图像修复
1
作者 祖奕 张孙杰 +1 位作者 吴鹏 马悦恒 《数据采集与处理》 北大核心 2025年第2期401-416,共16页
近年来,生成对抗网络广泛应用于图像修复领域并取得了不错的效果。但目前的方法并没有考虑在高分辨率图像(512×512)中会产生模糊的结构以及纹理的问题,这些问题主要来源于缺乏有效特征信息。针对此问题,提出一种将图像特征与语义... 近年来,生成对抗网络广泛应用于图像修复领域并取得了不错的效果。但目前的方法并没有考虑在高分辨率图像(512×512)中会产生模糊的结构以及纹理的问题,这些问题主要来源于缺乏有效特征信息。针对此问题,提出一种将图像特征与语义信息相结合的生成对抗网络。主要基于语义信息,提出一种上下文感知的图像修复模型,该模型自适应地将语义信息与图像特征融合,并且提出自适应卷积替代传统卷积,以及在解码器后增添一个多尺度上下文聚合模块捕捉远距离信息来进行上下文推理。在Places2、CelebA⁃HQ、Paris Street View和Openlogo数据集上进行实验,实验结果表明,在L1损失、峰值信噪比(PSNR)和结构相似度(SSIM)上所提方法与现有方法对比均有所提升。 展开更多
关键词 图像修复 语义信息 图像特征 多尺度上下文特征聚合
在线阅读 下载PDF
结合transformer多尺度实例交互的稀疏集目标检测 被引量:2
2
作者 阚亚亚 张孙杰 +1 位作者 熊娟 祖奕 《应用科学学报》 CAS CSCD 北大核心 2023年第5期777-788,共12页
为改进稀疏集目标检测方法存在的特征图缺乏空间细节信息、目标特征没有做到全局上下文实例交互、全局语义信息没有得到充分学习等问题,设计了一种结合自适应特征增强和实例特征交互的稀疏集目标检测算法。自适应特征增强模块在特征提... 为改进稀疏集目标检测方法存在的特征图缺乏空间细节信息、目标特征没有做到全局上下文实例交互、全局语义信息没有得到充分学习等问题,设计了一种结合自适应特征增强和实例特征交互的稀疏集目标检测算法。自适应特征增强模块在特征提取过程中利用不同尺度的池化和卷积来丰富高级语义信息,减小低级语义信息背景噪声的干扰,降低目标错检率和漏检率。实例特征交互模块在边界框回归设计中结合transformer的多层注意力,并融合通道注意力和动态卷积网络对建议框的通道信息进行增强,改善了目标的边缘信息,提高了网络的实例特征交互效率。最后在COCO2017数据集与原始网络进行实验对比,平均精度提升了4.2%,其中在大目标上提升了4.6%,在PASCAL VOC数据集上提升了2.7%。 展开更多
关键词 稀疏集目标检测 多尺度特征 实例特征交互 TRANSFORMER
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部