针对移动机器人蒙特卡罗定位(Monte Carlo localization,MCL)算法在含有对称和自相似结构的环境中容易失败的问题,提出了一种基于多假设跟踪的自适应蒙特卡罗定位改进算法.该算法根据粒子间空间相似性采用核密度树聚类算法对粒子群进行...针对移动机器人蒙特卡罗定位(Monte Carlo localization,MCL)算法在含有对称和自相似结构的环境中容易失败的问题,提出了一种基于多假设跟踪的自适应蒙特卡罗定位改进算法.该算法根据粒子间空间相似性采用核密度树聚类算法对粒子群进行聚类,每簇粒子代表一个位姿假设并用一个独立的MCL算法进行跟踪,总体上形成了一组非等权的粒子滤波器,很好地克服了普通粒子滤波器由于粒子贫乏而引起的过度收敛问题.同时运用该核密度树实现了自适应采样,提高了算法的性能.针对机器人"绑架"问题对该算法作了进一步的改进.实验结果证明了该算法的有效性.展开更多
针对采用Rao-Blackwellized粒子滤波器的移动机器人同步定位与地图构建算法(RBPF-SLAM)所面临的粒子退化问题,提出了一种改进的采样方法。该方法在原有采样方法的基础上,加入一个用Gibbs采样实现的向后MCMC(Markov chain Monte Carlo)...针对采用Rao-Blackwellized粒子滤波器的移动机器人同步定位与地图构建算法(RBPF-SLAM)所面临的粒子退化问题,提出了一种改进的采样方法。该方法在原有采样方法的基础上,加入一个用Gibbs采样实现的向后MCMC(Markov chain Monte Carlo)移动步骤,利用当前新获取的信息对机器人路径样本的最后一段进行调整,从而降低了样本退化的可能性。对比仿真实验验证了该方法的有效性。展开更多
文摘针对移动机器人蒙特卡罗定位(Monte Carlo localization,MCL)算法在含有对称和自相似结构的环境中容易失败的问题,提出了一种基于多假设跟踪的自适应蒙特卡罗定位改进算法.该算法根据粒子间空间相似性采用核密度树聚类算法对粒子群进行聚类,每簇粒子代表一个位姿假设并用一个独立的MCL算法进行跟踪,总体上形成了一组非等权的粒子滤波器,很好地克服了普通粒子滤波器由于粒子贫乏而引起的过度收敛问题.同时运用该核密度树实现了自适应采样,提高了算法的性能.针对机器人"绑架"问题对该算法作了进一步的改进.实验结果证明了该算法的有效性.
文摘针对采用Rao-Blackwellized粒子滤波器的移动机器人同步定位与地图构建算法(RBPF-SLAM)所面临的粒子退化问题,提出了一种改进的采样方法。该方法在原有采样方法的基础上,加入一个用Gibbs采样实现的向后MCMC(Markov chain Monte Carlo)移动步骤,利用当前新获取的信息对机器人路径样本的最后一段进行调整,从而降低了样本退化的可能性。对比仿真实验验证了该方法的有效性。
基金国家自然科学基金(the National Natural Science Foundation of China under Grant No.69975003)湖南省自然科学基金(the Natural Science Foundation of Hunan Province of China under Grant No.06JJ50143)