以节能减排调度为研究框架,针对风电出力的随机性,采用自回归滑动平均模型(auto-regressive and moving average,ARMA)生成大量风速场景,并基于场景削减技术得到具有代表性的典型风速;针对电动汽车入网的不确定性,采用随机概率抽样的电...以节能减排调度为研究框架,针对风电出力的随机性,采用自回归滑动平均模型(auto-regressive and moving average,ARMA)生成大量风速场景,并基于场景削减技术得到具有代表性的典型风速;针对电动汽车入网的不确定性,采用随机概率抽样的电动汽车集群模型,最终建立风-车互动接入的多目标电力调度动态模型。以CPLEX作为求解工具,采用模糊两阶段规划方法求解折衷规划结果。通过不同场景、不同电动汽车规模等算例,分析风电及电动汽车接入电网的调度策略及优化结果,验证所提模型及相关调度策略在改善电网运行经济性、降低污染气体排放方面的优势。展开更多
Ni self-assembly has been performed on Ga N(0001), Si(111) and sapphire(0001) substrates. Scanning electron microscopy(SEM) images verify that the Si(111) substrate leads to failure of the Ni assembly due to Si–N int...Ni self-assembly has been performed on Ga N(0001), Si(111) and sapphire(0001) substrates. Scanning electron microscopy(SEM) images verify that the Si(111) substrate leads to failure of the Ni assembly due to Si–N interlayer formation; the GaN(0001) and sapphire(0001) substrates promote assembly of the Ni particles. This indicates that the GaN/sapphire(0001) substrates are fit for Ni self-assembly. For the Ni assembly process on Ga N/sapphire(0001) substrates,three differences are observed from the x-ray diffraction(XRD) patterns:(i) Ni self-assembly on the sapphire(0001) needs a 900?C annealing temperature, lower than that on the GaN(0001) at 1000?C, and loses the Ni network structure stage;(ii) the Ni particle shape is spherical for the sapphire(0001) substrate, and truncated-cone for the GaN(0001) substrate; and(iii) a Ni–N interlayer forms between the Ni particles and the GaN(0001) substrate, but an interlayer does not appear for the sapphire(0001) substrate. All these differences are attributed to the interaction between the Ni and the Ga N/sapphire(0001) substrates. A model is introduced to explain this mechanism.展开更多
文摘以节能减排调度为研究框架,针对风电出力的随机性,采用自回归滑动平均模型(auto-regressive and moving average,ARMA)生成大量风速场景,并基于场景削减技术得到具有代表性的典型风速;针对电动汽车入网的不确定性,采用随机概率抽样的电动汽车集群模型,最终建立风-车互动接入的多目标电力调度动态模型。以CPLEX作为求解工具,采用模糊两阶段规划方法求解折衷规划结果。通过不同场景、不同电动汽车规模等算例,分析风电及电动汽车接入电网的调度策略及优化结果,验证所提模型及相关调度策略在改善电网运行经济性、降低污染气体排放方面的优势。
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61473266 and 61673404)the Program for Science&Technology Innovation Talents in Universities of Henan Province,China(Grant No.16HASTIT033)+2 种基金the Science and Technique Foundation of Henan Province,China(Grant Nos.132102210521,152102210153,182102210516,and 172102210601)the Key Program in Universities of Henan Province,China(Grant No.17B520044)the Science and Technique Project of the China National Textile and Apparel Council(Grant No.2018104)
文摘Ni self-assembly has been performed on Ga N(0001), Si(111) and sapphire(0001) substrates. Scanning electron microscopy(SEM) images verify that the Si(111) substrate leads to failure of the Ni assembly due to Si–N interlayer formation; the GaN(0001) and sapphire(0001) substrates promote assembly of the Ni particles. This indicates that the GaN/sapphire(0001) substrates are fit for Ni self-assembly. For the Ni assembly process on Ga N/sapphire(0001) substrates,three differences are observed from the x-ray diffraction(XRD) patterns:(i) Ni self-assembly on the sapphire(0001) needs a 900?C annealing temperature, lower than that on the GaN(0001) at 1000?C, and loses the Ni network structure stage;(ii) the Ni particle shape is spherical for the sapphire(0001) substrate, and truncated-cone for the GaN(0001) substrate; and(iii) a Ni–N interlayer forms between the Ni particles and the GaN(0001) substrate, but an interlayer does not appear for the sapphire(0001) substrate. All these differences are attributed to the interaction between the Ni and the Ga N/sapphire(0001) substrates. A model is introduced to explain this mechanism.