We study in phase space a zero-dimensional system of Brownian particles which move in a periodic potential and subject to an internal time derivative Ornstein-Uhlenbeck noise. To resolve the Fokker-Planck equation in ...We study in phase space a zero-dimensional system of Brownian particles which move in a periodic potential and subject to an internal time derivative Ornstein-Uhlenbeck noise. To resolve the Fokker-Planck equation in such a case, we propose an approximate analytical method. The theoretical predictions exhibit a second order noise-induced nonequilibrium phase transition, which is confirmed by numerical simulation results. The phase transition brings the system from an ergodicity to a nonergodicity phase as the potential barrier height decreases.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 10647129.
文摘We study in phase space a zero-dimensional system of Brownian particles which move in a periodic potential and subject to an internal time derivative Ornstein-Uhlenbeck noise. To resolve the Fokker-Planck equation in such a case, we propose an approximate analytical method. The theoretical predictions exhibit a second order noise-induced nonequilibrium phase transition, which is confirmed by numerical simulation results. The phase transition brings the system from an ergodicity to a nonergodicity phase as the potential barrier height decreases.