低照度图像的亮度、噪声和对比度等具有非均匀分布的特性,然而现有的低照度图像增强(LLIE)算法未能充分利用这些特性,在增强过程中容易导致细节丢失、颜色失真和视觉不连贯等问题,从而影响图像的视觉质量。针对上述问题,提出噪声与语义...低照度图像的亮度、噪声和对比度等具有非均匀分布的特性,然而现有的低照度图像增强(LLIE)算法未能充分利用这些特性,在增强过程中容易导致细节丢失、颜色失真和视觉不连贯等问题,从而影响图像的视觉质量。针对上述问题,提出噪声与语义先验引导的LLIE算法,以自适应地考虑低照度图像中不同区域的特性及其语义信息。具体来说,设计一种新的基于图像块分类的全局特征提取网络(ICGFE)提取全局特征,引入基于信息补偿的局部特征提取网络(ICLFE)提取局部特征,并提出基于噪声先验引导的特征融合策略对具有不同特性的图像区域进行自适应增强操作;此外,提出新的语义先验引导的颜色损失函数保持实例颜色的一致性。在公开数据集LOL(LOw-Light dataset)上的实验结果表明,所提算法相较于Retinex和DeepUPE(Underexposed Photo Enhancement using Deep illumination estimation)等算法,峰值信噪比(PSNR)提高了1.9%~89.1%,结构相似性(SSIM)也取得了较好的结果。可见,所提算法能自适应增强具有不同特性的图像区域,并且在颜色恢复、细节纹理还原和噪声抑制等方面均具有明显优势。展开更多
针对人脸检测模型在低照度环境下出现的检测性能明显降低这一问题,提出一种基于图像增强的低照度人脸检测方法。首先,采用图像增强方法对低照度图像预处理,以增强人脸的有效特征信息;其次,在模型主干网络后引入注意力机制,以提升网络对...针对人脸检测模型在低照度环境下出现的检测性能明显降低这一问题,提出一种基于图像增强的低照度人脸检测方法。首先,采用图像增强方法对低照度图像预处理,以增强人脸的有效特征信息;其次,在模型主干网络后引入注意力机制,以提升网络对人脸区域的关注,并同时降低非均匀光照与噪声带来的负面影响;此外,引入注意力边界框损失函数WIoU(Wise Intersection over Union),以提升网络对低质量人脸的检测准确率;最后,使用更有效的特征融合模块代替模型原有结构。在低照度人脸数据集DARK FACE上的实验结果表明,所提方法的平均检测精度AP@0.5相较于原始YOLOv7模型提升了2.4个百分点,精度平均值AP@0.5:0.95提升了1.4个百分点,并且不引入额外参数与计算量。另外,在其他2个低照度人脸数据集上的结果也表明所提方法的有效性与鲁棒性,证明所提方法适用于不同场景下的低照度人脸检测。展开更多
文摘低照度图像的亮度、噪声和对比度等具有非均匀分布的特性,然而现有的低照度图像增强(LLIE)算法未能充分利用这些特性,在增强过程中容易导致细节丢失、颜色失真和视觉不连贯等问题,从而影响图像的视觉质量。针对上述问题,提出噪声与语义先验引导的LLIE算法,以自适应地考虑低照度图像中不同区域的特性及其语义信息。具体来说,设计一种新的基于图像块分类的全局特征提取网络(ICGFE)提取全局特征,引入基于信息补偿的局部特征提取网络(ICLFE)提取局部特征,并提出基于噪声先验引导的特征融合策略对具有不同特性的图像区域进行自适应增强操作;此外,提出新的语义先验引导的颜色损失函数保持实例颜色的一致性。在公开数据集LOL(LOw-Light dataset)上的实验结果表明,所提算法相较于Retinex和DeepUPE(Underexposed Photo Enhancement using Deep illumination estimation)等算法,峰值信噪比(PSNR)提高了1.9%~89.1%,结构相似性(SSIM)也取得了较好的结果。可见,所提算法能自适应增强具有不同特性的图像区域,并且在颜色恢复、细节纹理还原和噪声抑制等方面均具有明显优势。
文摘针对人脸检测模型在低照度环境下出现的检测性能明显降低这一问题,提出一种基于图像增强的低照度人脸检测方法。首先,采用图像增强方法对低照度图像预处理,以增强人脸的有效特征信息;其次,在模型主干网络后引入注意力机制,以提升网络对人脸区域的关注,并同时降低非均匀光照与噪声带来的负面影响;此外,引入注意力边界框损失函数WIoU(Wise Intersection over Union),以提升网络对低质量人脸的检测准确率;最后,使用更有效的特征融合模块代替模型原有结构。在低照度人脸数据集DARK FACE上的实验结果表明,所提方法的平均检测精度AP@0.5相较于原始YOLOv7模型提升了2.4个百分点,精度平均值AP@0.5:0.95提升了1.4个百分点,并且不引入额外参数与计算量。另外,在其他2个低照度人脸数据集上的结果也表明所提方法的有效性与鲁棒性,证明所提方法适用于不同场景下的低照度人脸检测。