为了解决大型回转支承背景噪声大,特征信号微弱,寿命状态难以识别等问题,提出了一种基于改进深度信念网络(Deep Belief Network,DBN)的回转支承寿命状态识别方法。DBN网络拥有强大的深度学习能力,能够有效挖掘回转支承运行状态信息,解...为了解决大型回转支承背景噪声大,特征信号微弱,寿命状态难以识别等问题,提出了一种基于改进深度信念网络(Deep Belief Network,DBN)的回转支承寿命状态识别方法。DBN网络拥有强大的深度学习能力,能够有效挖掘回转支承运行状态信息,解决了传统浅层网络过度依赖特征提取效果和识别精度不高的问题。在DBN学习训练中,采用新的优化学习方法FEPCD(Free Energy in Persistent Contrastive Divergence),解决了DBN在长期学习中近似和分类能力下降的问题。然后利用自主研发试验台的试验数据对所提方法的优越性进行验证。将改进的DBN算法与浅层分类算法的识别结果进行比较。结果表明改进DBN网络比原始DBN网络和浅层算法能更精确反映回转支承寿命特征,所提方法具有稳定性和智能性的特点。展开更多
针对煤矸石分拣机器人分拣煤矸石时,带式输送机输送带打滑、跑偏以及带速波动造成的目标煤矸石位姿变化,从而导致抓取失败或空抓漏抓等问题,提出了一种改进的ORB-FLANN (Oriented FAST and Rotated BRIEF-Fast Library for Approximate ...针对煤矸石分拣机器人分拣煤矸石时,带式输送机输送带打滑、跑偏以及带速波动造成的目标煤矸石位姿变化,从而导致抓取失败或空抓漏抓等问题,提出了一种改进的ORB-FLANN (Oriented FAST and Rotated BRIEF-Fast Library for Approximate Nearest Neighbors)煤矸石识别图像与分拣图像高效匹配方法。提出改进ORB的特征点检测方法对煤矸石识别图像与分拣图像进行特征点检测,实现快速检测图像特征点;提出改进FLANN匹配算法对图像特征点进行匹配,实现煤矸石识别图像与分拣图像高效匹配。针对传统ORB方法对煤矸石图像特征检测时间长、重复率低问题,提出了改进ORB特征检测方法,提高了图像特征点检测速度和重复率;针对传统FLANN匹配方法对煤矸石图像匹配精确率低问题,提出了融合PROSAC算法的改进FLANN匹配方法,剔除错误特征匹配点对,提高了图像匹配的精确率。在自主研发的双机械臂桁架式煤矸石分拣机器人试验平台上应用文中方法、SURF特征匹配方法、HU不变矩匹配方法、SIFT特征匹配方法和ORB特征匹配方法分别进行了不同带速、尺度、旋转角度条件下的煤矸石匹配试验,结果表明:本方法的匹配率为98.2%,匹配时间为141 ms,具有匹配率高、实时性好以及鲁棒性强等特点,能够满足煤矸石识别图像与分拣图像高效精准匹配的要求。展开更多
研究了使用开关电源为射频系统供电时,射频系统对于电源纹波的容忍度。从电源纹波泄漏到基带信号、电源纹波与射频信号混频两方面研究了电源纹波对系统的影响,并根据协议规范,确定出电源纹波值。在IEEE 802.11g协议下,通过仿真得出电源...研究了使用开关电源为射频系统供电时,射频系统对于电源纹波的容忍度。从电源纹波泄漏到基带信号、电源纹波与射频信号混频两方面研究了电源纹波对系统的影响,并根据协议规范,确定出电源纹波值。在IEEE 802.11g协议下,通过仿真得出电源纹波应控制在15 m V以下。展开更多
文摘为了解决大型回转支承背景噪声大,特征信号微弱,寿命状态难以识别等问题,提出了一种基于改进深度信念网络(Deep Belief Network,DBN)的回转支承寿命状态识别方法。DBN网络拥有强大的深度学习能力,能够有效挖掘回转支承运行状态信息,解决了传统浅层网络过度依赖特征提取效果和识别精度不高的问题。在DBN学习训练中,采用新的优化学习方法FEPCD(Free Energy in Persistent Contrastive Divergence),解决了DBN在长期学习中近似和分类能力下降的问题。然后利用自主研发试验台的试验数据对所提方法的优越性进行验证。将改进的DBN算法与浅层分类算法的识别结果进行比较。结果表明改进DBN网络比原始DBN网络和浅层算法能更精确反映回转支承寿命特征,所提方法具有稳定性和智能性的特点。
文摘针对煤矸石分拣机器人分拣煤矸石时,带式输送机输送带打滑、跑偏以及带速波动造成的目标煤矸石位姿变化,从而导致抓取失败或空抓漏抓等问题,提出了一种改进的ORB-FLANN (Oriented FAST and Rotated BRIEF-Fast Library for Approximate Nearest Neighbors)煤矸石识别图像与分拣图像高效匹配方法。提出改进ORB的特征点检测方法对煤矸石识别图像与分拣图像进行特征点检测,实现快速检测图像特征点;提出改进FLANN匹配算法对图像特征点进行匹配,实现煤矸石识别图像与分拣图像高效匹配。针对传统ORB方法对煤矸石图像特征检测时间长、重复率低问题,提出了改进ORB特征检测方法,提高了图像特征点检测速度和重复率;针对传统FLANN匹配方法对煤矸石图像匹配精确率低问题,提出了融合PROSAC算法的改进FLANN匹配方法,剔除错误特征匹配点对,提高了图像匹配的精确率。在自主研发的双机械臂桁架式煤矸石分拣机器人试验平台上应用文中方法、SURF特征匹配方法、HU不变矩匹配方法、SIFT特征匹配方法和ORB特征匹配方法分别进行了不同带速、尺度、旋转角度条件下的煤矸石匹配试验,结果表明:本方法的匹配率为98.2%,匹配时间为141 ms,具有匹配率高、实时性好以及鲁棒性强等特点,能够满足煤矸石识别图像与分拣图像高效精准匹配的要求。