期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于1DCNN-LSTM的锂离子电池SOH预测 被引量:20
1
作者 王英楷 张红 王星辉 《储能科学与技术》 CAS CSCD 北大核心 2022年第1期240-245,共6页
为了提高锂离子电池健康状态(SOH)的预测精准度和稳定性,针对常规特征选取复杂且无法有效利用等问题,提出了一种联合一维卷积(1DCNN)与长短记忆网络(LSTM)的电池SOH预测方法。首先采用多通道串联电压、电流、温度构建多维特征,然后采用1... 为了提高锂离子电池健康状态(SOH)的预测精准度和稳定性,针对常规特征选取复杂且无法有效利用等问题,提出了一种联合一维卷积(1DCNN)与长短记忆网络(LSTM)的电池SOH预测方法。首先采用多通道串联电压、电流、温度构建多维特征,然后采用1DCNN从样本数据中提取高级数据特征输入LSTM中以有效利用历史信息,最后通过全连接层输出电池SOH的预测结果。采用NASA锂离子电池容量衰减数据,对所应用的联合算法进行验证,结果表明,相较于其他预测算法,基于1DCNN-LSTM的算法具有更准确的SOH预测结果,其平均绝对误差(MAE)为0.01左右,且失效点误差周期(RUL)小于2个周期。 展开更多
关键词 1DCNN LSTM 锂电池 多通道特征 电池寿命
在线阅读 下载PDF
基于迁移学习的LiPON制备工艺模拟优化 被引量:3
2
作者 吴军君 王涛 +1 位作者 王英楷 王星辉 《电子学报》 EI CAS CSCD 北大核心 2023年第3期687-693,共7页
不同工艺参数对磁控溅射制备固态电解质薄膜LiPON的物理化学特性有巨大影响,使用机器学习对过程建模,能加强内部原理理解,优化参数提升薄膜性能.迁移学习通过挖掘历史数据集中的信息,提升模型精确度与泛化能力,从而更好地找到良好的工... 不同工艺参数对磁控溅射制备固态电解质薄膜LiPON的物理化学特性有巨大影响,使用机器学习对过程建模,能加强内部原理理解,优化参数提升薄膜性能.迁移学习通过挖掘历史数据集中的信息,提升模型精确度与泛化能力,从而更好地找到良好的工艺参数.本文以文献中磁控溅射制备LiPON的数据集为例,探究靶基距离、溅射功率、溅射气压对LiPON薄膜的离子电导率的影响.对比普通机器学习,迁移学习模型在多项误差指标上提升30%以上.通过模型遍历参数空间,搜寻最佳工艺组合,预测LiPON薄膜的离子电导率为2.04μS/cm,优于文献中的最优值,方差分析与实际样本证明了该方法具有可行性. 展开更多
关键词 LIPON 迁移学习 机器学习 工艺优化 方差分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部