DE Castro提出的克隆选择算法(CSA)中,抗体的多样性主要通过高频变异来实现,而实际生物免疫系统中还有一个重要的操作是受体编辑.受此启发,提出了带受体编辑的改进克隆选择算法.该算法利用未成熟优良子群体提供的优良基因片断,根据路径...DE Castro提出的克隆选择算法(CSA)中,抗体的多样性主要通过高频变异来实现,而实际生物免疫系统中还有一个重要的操作是受体编辑.受此启发,提出了带受体编辑的改进克隆选择算法.该算法利用未成熟优良子群体提供的优良基因片断,根据路径代价最小化和延时要求对抗体进行两次受体编辑.这样,在无需求解备选路径集的情况下,直接运用该改进算法可快速寻到最优解.在时延受限组播路由的仿真实验中表明:该算法比一般CSA算法和遗传(GA)算法的搜索效率更高,算法复杂度更低.展开更多
认知诊断模型从学习者的认知结构出发,建模学习者与试题之间的潜在关系,结合智能算法并根据试题作答结果可评估学习者的知识水平.大多数认知诊断模型是将学习者的高阶能力特征视为单维,忽视了后天努力的影响.为此,本文提出了一种考虑能...认知诊断模型从学习者的认知结构出发,建模学习者与试题之间的潜在关系,结合智能算法并根据试题作答结果可评估学习者的知识水平.大多数认知诊断模型是将学习者的高阶能力特征视为单维,忽视了后天努力的影响.为此,本文提出了一种考虑能力特征与努力特征相互补偿的具有二维高阶特征的新认知诊断模型——认知反应模型(Cognitive and Response Model,C&RM).该模型通过设置能力特征与努力特征相互补偿机制来融合两高阶特征参数以精准建模学习者的知识水平.同时,还构建了知识点弱项特征参数,以综合考虑学习者的知识水平与不同知识点对作答试题的影响,进一步提高模型的解释性和预测精度.采用自建的HNU_SYS数据集和Math1,Math2,FrcSub公共数据集,通过实验对比分析了C&RM模型、最新的认知诊断模型和经典诊断模型.当数据训练集为70%最佳比例时,C&RM在4个数据集上分别比次优方法提升了6.3%,4.3%,3.3%,5.2%,其预测性能最佳,验证了本文模型的可行性和有效性.展开更多
文摘认知诊断模型从学习者的认知结构出发,建模学习者与试题之间的潜在关系,结合智能算法并根据试题作答结果可评估学习者的知识水平.大多数认知诊断模型是将学习者的高阶能力特征视为单维,忽视了后天努力的影响.为此,本文提出了一种考虑能力特征与努力特征相互补偿的具有二维高阶特征的新认知诊断模型——认知反应模型(Cognitive and Response Model,C&RM).该模型通过设置能力特征与努力特征相互补偿机制来融合两高阶特征参数以精准建模学习者的知识水平.同时,还构建了知识点弱项特征参数,以综合考虑学习者的知识水平与不同知识点对作答试题的影响,进一步提高模型的解释性和预测精度.采用自建的HNU_SYS数据集和Math1,Math2,FrcSub公共数据集,通过实验对比分析了C&RM模型、最新的认知诊断模型和经典诊断模型.当数据训练集为70%最佳比例时,C&RM在4个数据集上分别比次优方法提升了6.3%,4.3%,3.3%,5.2%,其预测性能最佳,验证了本文模型的可行性和有效性.