We investigate the nonlocal transport modulated by Coulomb interactions in devices comprising two interacting Majorana wires,where both nanowires are in proximity to a mesoscopic superconducting(SC)island.Each Majoran...We investigate the nonlocal transport modulated by Coulomb interactions in devices comprising two interacting Majorana wires,where both nanowires are in proximity to a mesoscopic superconducting(SC)island.Each Majorana bound state(MBS)is coupled to one lead via a quantum dot with resonant levels.In this device,the nonlocal correlations can be induced in the absence of Majorana energy splitting.We find that the negative differential conductance and giant current noise cross correlation could be induced,due to the interplay between nonlocality of MBSs and dynamical Coulomb blockade effect.This feature may provide a signature for the existence of the MBSs.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12074209 and 12274063)the Fundamental Research Funds for the Central Universities(Grant No.ZYGX2019J100)the Open Project of State Key Laboratory of Low-Dimensional Quantum Physics(Grant No.KF202008)。
文摘We investigate the nonlocal transport modulated by Coulomb interactions in devices comprising two interacting Majorana wires,where both nanowires are in proximity to a mesoscopic superconducting(SC)island.Each Majorana bound state(MBS)is coupled to one lead via a quantum dot with resonant levels.In this device,the nonlocal correlations can be induced in the absence of Majorana energy splitting.We find that the negative differential conductance and giant current noise cross correlation could be induced,due to the interplay between nonlocality of MBSs and dynamical Coulomb blockade effect.This feature may provide a signature for the existence of the MBSs.