For p ∈ R, the generalized logarithmic mean Lp(a, b) and Seiffert's mean T(a, b) of two positive real numbers a and b are defined in (1.1) and (1.2) below respectively. In this paper, we find the greatest p ...For p ∈ R, the generalized logarithmic mean Lp(a, b) and Seiffert's mean T(a, b) of two positive real numbers a and b are defined in (1.1) and (1.2) below respectively. In this paper, we find the greatest p and least q such that the double-inequality Lp(a, b) 〈 T(a,b) 〈 Lq(a,b) holds for all a,b 〉 0 and a ≠ b.展开更多
Let D■R2 be a Jordan domain,D*=R2\D,the exterior of D.In this article,the authors obtained the following results:(1)If D is a John disk,then D is an outer linearly locally connected domain;(2)If D* is a John disk,the...Let D■R2 be a Jordan domain,D*=R2\D,the exterior of D.In this article,the authors obtained the following results:(1)If D is a John disk,then D is an outer linearly locally connected domain;(2)If D* is a John disk,then D is an inner linearly locally connected domain;(3)A homeomorphism f:R 2 →R 2 is a quasiconformal mapping if and only if f(D)is a John disk for any John disk D■R 2 ;and(4)If D is a bounded quasidisk,then D is a John disk,and there exists an unbounded quasidisk which is not a John disk.展开更多
In this article, the authors study some basic properties of the so-called quasilinear- additive functions, and some applications to the special functions of quasiconformal analysis are specified.
基金supported by the National Natural Science Foundation of China (11071069 and 11171307)Natural Science Foundation of Hunan Province(09JJ6003)Innovation Team Foundation of the Department of Education of Zhejiang Province (T200924)
文摘For p ∈ R, the generalized logarithmic mean Lp(a, b) and Seiffert's mean T(a, b) of two positive real numbers a and b are defined in (1.1) and (1.2) below respectively. In this paper, we find the greatest p and least q such that the double-inequality Lp(a, b) 〈 T(a,b) 〈 Lq(a,b) holds for all a,b 〉 0 and a ≠ b.
基金supported by National Nature Science Foundation of China(NNSFC)(Grant No.11601485)Science Foundation of Zhejiang Sci-Tech University(ZSTU)(Grant No.16062023-Y)
基金Sponsored by the Foundation of Pre-973 Program of China under grant2006CB708304the National NSFC under grant 10771195the NSF of Zhejiang Province under grant Y607128
文摘Let D■R2 be a Jordan domain,D*=R2\D,the exterior of D.In this article,the authors obtained the following results:(1)If D is a John disk,then D is an outer linearly locally connected domain;(2)If D* is a John disk,then D is an inner linearly locally connected domain;(3)A homeomorphism f:R 2 →R 2 is a quasiconformal mapping if and only if f(D)is a John disk for any John disk D■R 2 ;and(4)If D is a bounded quasidisk,then D is a John disk,and there exists an unbounded quasidisk which is not a John disk.
基金supported by NSFC (60850005)NSF of Zhejiang Province(Y7080106)
文摘In this article, the authors study some basic properties of the so-called quasilinear- additive functions, and some applications to the special functions of quasiconformal analysis are specified.
基金This research is supported by National Natural Science Foundation of China(NNSFC)(Grant No.11771400 and No.11601485)Science Foundation of Zhejiang Sci-Tech University(ZSTU)(Grant No.16062023-Y)。