在6G通信系统中,随着天线规模的增大,菲涅尔区逐步扩展,现有的远场通信假设会引入严重的能量扩散,即角度域不再稀疏.近场通信利用球面波前进行建模,其信道模型与用户到达基站的角度和距离相关,在通信的同时可以估计角度和距离,实现通信...在6G通信系统中,随着天线规模的增大,菲涅尔区逐步扩展,现有的远场通信假设会引入严重的能量扩散,即角度域不再稀疏.近场通信利用球面波前进行建模,其信道模型与用户到达基站的角度和距离相关,在通信的同时可以估计角度和距离,实现通信感知一体化(Integrated Sensing And Communication,ISAC).本文针对近场环境下ISAC问题,提出了基于极坐标的近场模型,通过非均匀网格划分将ISAC转化为稀疏估计问题,进而提出基于稀疏贝叶斯学习模型和消息传递算法的ISAC算法,同时完成活跃用户检测、位置感知和通信.此外,所提算法采用差分调制,在通信和感知中无需利用导频,即可实现盲ISAC,有效提升通信系统的频谱效率.仿真结果表明,相对于均匀区域划分和文献现有方法,本文提出的ISAC算法可获得更高的感知精度和误码率性能.展开更多
针对传统跳频网台分选技术在低信噪比条件下检测效果不佳且实时性差的问题,本文提出一种基于YOLOv8(You Only Look Once version 8)的跳频信号分选算法.首先,对接收到的混叠信号进行短时傅里叶变换生成灰度时频图作为YOLOv8网络模型的输...针对传统跳频网台分选技术在低信噪比条件下检测效果不佳且实时性差的问题,本文提出一种基于YOLOv8(You Only Look Once version 8)的跳频信号分选算法.首先,对接收到的混叠信号进行短时傅里叶变换生成灰度时频图作为YOLOv8网络模型的输入.其次,针对混叠信号中扫频、定频信号以及跳频信号之间发生频率碰撞对检测精度的影响,在C2f层中引入可变形卷积核(Deformable Convolutional Net-works v2,DCNv2)提高网络特征提取的泛化能力.再次,在Backbone层中加入SimAM注意力机制,解决低信噪比下背景噪声易与跳频信号混淆影响检测精度的问题.最后,将Detect检测头的卷积核替换为局部卷积核(Partial Convolution,PConv),在mAP@0.5精度损失不超过0.37%的情况下使网络计算复杂度降低32.18%,提高网络模型的推理速度.实验结果表明,本文所提算法在信噪比为-5 dB时分选率达到97.68%,且模型收敛快,鲁棒性强.展开更多
文摘在6G通信系统中,随着天线规模的增大,菲涅尔区逐步扩展,现有的远场通信假设会引入严重的能量扩散,即角度域不再稀疏.近场通信利用球面波前进行建模,其信道模型与用户到达基站的角度和距离相关,在通信的同时可以估计角度和距离,实现通信感知一体化(Integrated Sensing And Communication,ISAC).本文针对近场环境下ISAC问题,提出了基于极坐标的近场模型,通过非均匀网格划分将ISAC转化为稀疏估计问题,进而提出基于稀疏贝叶斯学习模型和消息传递算法的ISAC算法,同时完成活跃用户检测、位置感知和通信.此外,所提算法采用差分调制,在通信和感知中无需利用导频,即可实现盲ISAC,有效提升通信系统的频谱效率.仿真结果表明,相对于均匀区域划分和文献现有方法,本文提出的ISAC算法可获得更高的感知精度和误码率性能.
文摘针对传统跳频网台分选技术在低信噪比条件下检测效果不佳且实时性差的问题,本文提出一种基于YOLOv8(You Only Look Once version 8)的跳频信号分选算法.首先,对接收到的混叠信号进行短时傅里叶变换生成灰度时频图作为YOLOv8网络模型的输入.其次,针对混叠信号中扫频、定频信号以及跳频信号之间发生频率碰撞对检测精度的影响,在C2f层中引入可变形卷积核(Deformable Convolutional Net-works v2,DCNv2)提高网络特征提取的泛化能力.再次,在Backbone层中加入SimAM注意力机制,解决低信噪比下背景噪声易与跳频信号混淆影响检测精度的问题.最后,将Detect检测头的卷积核替换为局部卷积核(Partial Convolution,PConv),在mAP@0.5精度损失不超过0.37%的情况下使网络计算复杂度降低32.18%,提高网络模型的推理速度.实验结果表明,本文所提算法在信噪比为-5 dB时分选率达到97.68%,且模型收敛快,鲁棒性强.