期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
曲率控制细胞和组织生长演化模型的Cauchy问题
1
作者 王增桂 《数学物理学报(A辑)》 CSCD 北大核心 2023年第3期771-784,共14页
该文研究了一类由曲率控制细胞和组织生长演化的Cauchy问题,根据支撑函数的定义,将拟线性退化的演化方程转化成一类非齐次拟线性双曲方程组.进一步通过对拟线性双曲方程组的解的先验估计,证明了该双曲曲率流Cauchy问题经典解的生命跨度.
关键词 曲率控制下细胞和组织的演化 非齐次拟线性双曲方程组 先验估计 生命跨度
在线阅读 下载PDF
极大似然估计方法介绍 被引量:25
2
作者 赵军圣 庄光明 王增桂 《长春理工大学学报(自然科学版)》 2010年第6期53-54,共2页
主要介绍了极大似然估计方法的来源、极大似然原理、极大似然问题求解方法以及什么情况下极大似然估计不能求解等。
关键词 极大似然估计 原理 方法
在线阅读 下载PDF
HYPERBOLIC MEAN CURVATURE FLOW:EVOLUTION OF PLANE CURVES 被引量:5
3
作者 孔德兴 刘克峰 王增桂 《Acta Mathematica Scientia》 SCIE CSCD 2009年第3期493-514,共22页
In this paper we investigate the one-dimensional hyperbolic mean curvatureflow for closed plane curves. More precisely, we consider a family of closed curves F : S1 × [0, T ) → R^2 which satisfies the followin... In this paper we investigate the one-dimensional hyperbolic mean curvatureflow for closed plane curves. More precisely, we consider a family of closed curves F : S1 × [0, T ) → R^2 which satisfies the following evolution equation δ^2F /δt^2 (u, t) = k(u, t)N(u, t)-▽ρ(u, t), ∨(u, t) ∈ S^1 × [0, T ) with the initial data F (u, 0) = F0(u) and δF/δt (u, 0) = f(u)N0, where k is the mean curvature and N is the unit inner normal vector of the plane curve F (u, t), f(u) and N0 are the initial velocity and the unit inner normal vector of the initial convex closed curve F0, respectively, and ▽ρ is given by ▽ρ Δ=(δ^2F /δsδt ,δF/δt) T , in which T stands for the unit tangent vector. The above problem is an initial value problem for a system of partial differential equations for F , it can be completely reduced to an initial value problem for a single partial differential equation for its support function. The latter equation is a hyperbolic Monge-Ampere equation. Based on this, we show that there exists a class of initial velocities such that the solution of the above initial value problem exists only at a finite time interval [0, Tmax) and when t goes to Tmax, either the solution convergesto a point or shocks and other propagating discontinuities are generated. Furthermore, we also consider the hyperbolic mean curvature flow with the dissipative terms and obtain the similar equations about the support functions and the curvature of the curve. In the end, we discuss the close relationship between the hyperbolic mean curvature flow and the equations for the evolving relativistic string in the Minkowski space-time R^1,1. 展开更多
关键词 hyperbolic mean curvature flow hyperbolic Monge-Ampere equation closedplane curve short-time existence
在线阅读 下载PDF
Exact solutions of a time-fractional modified KdV equation via bifurcation analysis
4
作者 刘敏远 许慧 王增桂 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期192-199,共8页
The time-fractional modified Korteweg-de Vries(KdV)equation is committed to establish exact solutions by employing the bifurcation method.Firstly,the phase portraits and related qualitative analysis are comprehensivel... The time-fractional modified Korteweg-de Vries(KdV)equation is committed to establish exact solutions by employing the bifurcation method.Firstly,the phase portraits and related qualitative analysis are comprehensively provided.Then,we give parametric expressions of different types of solutions matching with the corresponding orbits.Finally,solution profiles,3D and density plots of some solutions are presented with proper parametric choices. 展开更多
关键词 the time-fractional modified KdV equation bifurcation analysis exact solutions
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部