One- and two-photon absorption and excited fluorescence of the CdSe and the core-shell structure CdSe/ZnS quantum dots (QDs) in n-hexane is investigated. The linear and nonlinear absorption coefficients are measured...One- and two-photon absorption and excited fluorescence of the CdSe and the core-shell structure CdSe/ZnS quantum dots (QDs) in n-hexane is investigated. The linear and nonlinear absorption coefficients are measured and the two-photon-absorption cross sections of the QDs are also obtained. For both one-photon fluorescence and two-photon fluorescence, the emission efficiency of CdSe/ZnS is much higher than that of CdSe, originating from the effective surface passivation of the core-shell structure.展开更多
Au-TiO2 composite films with Au atom content varying from about 15% to 82% are prepared by co-sputtering technique. Both open- and closed-aperture Z-scan of the samples are performed in the femtosecond time region. A ...Au-TiO2 composite films with Au atom content varying from about 15% to 82% are prepared by co-sputtering technique. Both open- and closed-aperture Z-scan of the samples are performed in the femtosecond time region. A conversion of the nonlinear absorption from negative to positive is observed as the A u atom content increases due to the saturation of reverse saturable absorption. The nonlinear refractive index γ and effective nonlinear absorption coefficient βeff at the Au atom content of 54% are measured to be 1.6 × 10^-2 cm^2/GW and -2.6 ×10^3 cm/GW, respectively. The corresponding third-order optical nonlinearity X^(3) is about 6.3 × 10^-8 esu.展开更多
Polarization-dependent linear absorption, second-harmonic generation (SHG) and 3rd-order nonlinearities of wellaligned ZnO nanorod arrays have been investigated with ps pulses. The depressed spectral width and the e...Polarization-dependent linear absorption, second-harmonic generation (SHG) and 3rd-order nonlinearities of wellaligned ZnO nanorod arrays have been investigated with ps pulses. The depressed spectral width and the enhanced intensity of reflective SHG along the long axis of ZnO nanorods were observed by using p-polarized pulses, which is explained by the optical confinements. The nonlinear absorption coefficient measured with s-polarization reached the maximum 4.0×10^4cm/GW at the wavelength -750nm, which revealed a large two-photon resonance absorption attributed to the quantum confined exciton when the polarization is vertical to the long axis of ZnO nanorod.展开更多
Au nanorods dispersed in aqueous solution were prepared with the electrochemical method. The absorption spectrum shows two absorption peaks corresponding to the perpendicular and transverse surface plasma resonance ab...Au nanorods dispersed in aqueous solution were prepared with the electrochemical method. The absorption spectrum shows two absorption peaks corresponding to the perpendicular and transverse surface plasma resonance absorption of the nanorods. The third-order optical nonlinear properties are investigated by Z-scans. The signs of the nonlinear absorption coemcient and refractive index are reversed as the intensity of incident laser increases, which is due to the shape change of the gold nanoparticles melted by the intense laser pulses.展开更多
We synthesize hollow-structured Ag@Au nanoparticles with single porous shell and Ag@Au/Ag@Au double shells by using the galvanic replacement reaction and investigate their linear and nonlinear optical properties. Our ...We synthesize hollow-structured Ag@Au nanoparticles with single porous shell and Ag@Au/Ag@Au double shells by using the galvanic replacement reaction and investigate their linear and nonlinear optical properties. Our results show that the surface plasmon resonance wavelength of the hollow porous nanoparticles could be easily tuned in a wide range in the visible and near infrared region by controlling the volume of HAuCl4. The nonlinear optical refraction of the double-shelled Ag@Au/Ag@Au nanoparticles is prominently enhanced by the plasmon resonance. Our findings may find applications in biosensors and nonlinear optical nanodevices.展开更多
We explore Nd3+ concentration and excitation power dependences of the avalanche upconversion of NdxY1-xVO4 (x=0-1) nanocrystals with uniform size and shape. The avalanche threshold power caused by the near-resonant...We explore Nd3+ concentration and excitation power dependences of the avalanche upconversion of NdxY1-xVO4 (x=0-1) nanocrystals with uniform size and shape. The avalanche threshold power caused by the near-resonant energy transfer between 4F5/2→4I13/2 and 4F5/2→2G9/2 significantly decreases as the Nd3+ concentration increases. The off-resonant energy transfer between 4F5/2→4I13/2 and 4F5/2→4G11/2 in the strong excitation regime leads to apparent broadening on the blue-side of the upconversion spectrum of NdVO4 nanocrystals.展开更多
We investigate the power-dependent luminescence of CdSe/ZnS semiconductor quantum dots closely packed layer- by-layer in the proximity of a silver nanorod array cavity. It is found that the emission peak shifts signif...We investigate the power-dependent luminescence of CdSe/ZnS semiconductor quantum dots closely packed layer- by-layer in the proximity of a silver nanorod array cavity. It is found that the emission peak shifts significantly to the longer wavelengths as the excitation power increases, especially when the longitudinal surface plasmon resonance of the Ag nanorod array cavity is adjusted to be close to the emission wavelength. The equivalent gain varies with the coating layer of CdSe/ZnS semiconductor quantum dots and the excitation power is also studied to explain this interesting spectrum-shifting effect. These findings could find applications in the dynamic information processing of active plasmonic and photonic nanodevices.展开更多
The photon correlation of photon emission from a single quantum dot with cw excitation and pulsed excitation is investigated in details. To calculate the second-order correlation function for optical pumping, we deduc...The photon correlation of photon emission from a single quantum dot with cw excitation and pulsed excitation is investigated in details. To calculate the second-order correlation function for optical pumping, we deduce rate equations with a simplified two-level model under cw excitation and present the master equation approach in the interaction picture to the study of evolution of a three-level system under pulsed excitation. In addition, we report photon correlation measurements on a single self-assembled In0.5Ga0.5As quantum dot, which show strong antibunching behaviour under both the conditions of cw and pulsed excitations. The calculated results are in agreement with the experimental measurements.展开更多
Au nanocube-CdS core-shell nanocomposites are prepared by using a one-pot method in aqueous phase with cetyltrimethylammonium bromide as the surfactant. The extinction properties and photocatalytic activity of Au-CdS ...Au nanocube-CdS core-shell nanocomposites are prepared by using a one-pot method in aqueous phase with cetyltrimethylammonium bromide as the surfactant. The extinction properties and photocatalytic activity of Au-CdS nanocomposites are investigated. Compared with the pure Au nanocubes, the Au-CdS nanocomposites exhibit enhanced extinction intensity. Compared with CdS nanoparticles, the Au-CdS nanocomposites exhibit improved photocatalytic activity. Furthermore, the photocatalytic et^ciency is even better with the increase in the core size of the Au-CdS nanocomposites. Typically, the photocatalytic efficiency of the Au-CdS with 62 nm sized Au nanocubes is about two times higher than that of the pure CdS. It is believed that the Au-CdS nanocomposites may find potential applications in environmental fields, and this synthesis method can be extended to prepare a wide variety of functional composites with Au cores.展开更多
基金Supported by the National Natural Science Foundation of China under Grants Nos 10534030 and 10474075.The authors thank J. Peng for providing the QDs
文摘One- and two-photon absorption and excited fluorescence of the CdSe and the core-shell structure CdSe/ZnS quantum dots (QDs) in n-hexane is investigated. The linear and nonlinear absorption coefficients are measured and the two-photon-absorption cross sections of the QDs are also obtained. For both one-photon fluorescence and two-photon fluorescence, the emission efficiency of CdSe/ZnS is much higher than that of CdSe, originating from the effective surface passivation of the core-shell structure.
文摘Au-TiO2 composite films with Au atom content varying from about 15% to 82% are prepared by co-sputtering technique. Both open- and closed-aperture Z-scan of the samples are performed in the femtosecond time region. A conversion of the nonlinear absorption from negative to positive is observed as the A u atom content increases due to the saturation of reverse saturable absorption. The nonlinear refractive index γ and effective nonlinear absorption coefficient βeff at the Au atom content of 54% are measured to be 1.6 × 10^-2 cm^2/GW and -2.6 ×10^3 cm/GW, respectively. The corresponding third-order optical nonlinearity X^(3) is about 6.3 × 10^-8 esu.
文摘Polarization-dependent linear absorption, second-harmonic generation (SHG) and 3rd-order nonlinearities of wellaligned ZnO nanorod arrays have been investigated with ps pulses. The depressed spectral width and the enhanced intensity of reflective SHG along the long axis of ZnO nanorods were observed by using p-polarized pulses, which is explained by the optical confinements. The nonlinear absorption coefficient measured with s-polarization reached the maximum 4.0×10^4cm/GW at the wavelength -750nm, which revealed a large two-photon resonance absorption attributed to the quantum confined exciton when the polarization is vertical to the long axis of ZnO nanorod.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10534030 and 10474075.
文摘Au nanorods dispersed in aqueous solution were prepared with the electrochemical method. The absorption spectrum shows two absorption peaks corresponding to the perpendicular and transverse surface plasma resonance absorption of the nanorods. The third-order optical nonlinear properties are investigated by Z-scans. The signs of the nonlinear absorption coemcient and refractive index are reversed as the intensity of incident laser increases, which is due to the shape change of the gold nanoparticles melted by the intense laser pulses.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174229,11204221 and 11374236the National Basic Research Program of China under Grant No 2011CB922201
文摘We synthesize hollow-structured Ag@Au nanoparticles with single porous shell and Ag@Au/Ag@Au double shells by using the galvanic replacement reaction and investigate their linear and nonlinear optical properties. Our results show that the surface plasmon resonance wavelength of the hollow porous nanoparticles could be easily tuned in a wide range in the visible and near infrared region by controlling the volume of HAuCl4. The nonlinear optical refraction of the double-shelled Ag@Au/Ag@Au nanoparticles is prominently enhanced by the plasmon resonance. Our findings may find applications in biosensors and nonlinear optical nanodevices.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10534030 and 10874134, the National Basic Research Program of China under Grant No 2007CB935304, the Key Project of Ministry of Education under Grant No 708063, and the Research Grants Council of Hong Kong (GRF No 604206).
文摘We explore Nd3+ concentration and excitation power dependences of the avalanche upconversion of NdxY1-xVO4 (x=0-1) nanocrystals with uniform size and shape. The avalanche threshold power caused by the near-resonant energy transfer between 4F5/2→4I13/2 and 4F5/2→2G9/2 significantly decreases as the Nd3+ concentration increases. The off-resonant energy transfer between 4F5/2→4I13/2 and 4F5/2→4G11/2 in the strong excitation regime leads to apparent broadening on the blue-side of the upconversion spectrum of NdVO4 nanocrystals.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174229,11374236 and 11204221the National Basic Research Program of China under Grant No 2011CB922201
文摘We investigate the power-dependent luminescence of CdSe/ZnS semiconductor quantum dots closely packed layer- by-layer in the proximity of a silver nanorod array cavity. It is found that the emission peak shifts significantly to the longer wavelengths as the excitation power increases, especially when the longitudinal surface plasmon resonance of the Ag nanorod array cavity is adjusted to be close to the emission wavelength. The equivalent gain varies with the coating layer of CdSe/ZnS semiconductor quantum dots and the excitation power is also studied to explain this interesting spectrum-shifting effect. These findings could find applications in the dynamic information processing of active plasmonic and photonic nanodevices.
基金Supported by the National Natural Science Foundation of China under Grant No 10474075.
文摘The photon correlation of photon emission from a single quantum dot with cw excitation and pulsed excitation is investigated in details. To calculate the second-order correlation function for optical pumping, we deduce rate equations with a simplified two-level model under cw excitation and present the master equation approach in the interaction picture to the study of evolution of a three-level system under pulsed excitation. In addition, we report photon correlation measurements on a single self-assembled In0.5Ga0.5As quantum dot, which show strong antibunching behaviour under both the conditions of cw and pulsed excitations. The calculated results are in agreement with the experimental measurements.
基金Supported by the National Program on Key Science Research of China under Grant No 2011CB922201, and the National Natural Science Foundation of China under Grant Nos 11174229, 11204221, 11374236 and 11204112.
文摘Au nanocube-CdS core-shell nanocomposites are prepared by using a one-pot method in aqueous phase with cetyltrimethylammonium bromide as the surfactant. The extinction properties and photocatalytic activity of Au-CdS nanocomposites are investigated. Compared with the pure Au nanocubes, the Au-CdS nanocomposites exhibit enhanced extinction intensity. Compared with CdS nanoparticles, the Au-CdS nanocomposites exhibit improved photocatalytic activity. Furthermore, the photocatalytic et^ciency is even better with the increase in the core size of the Au-CdS nanocomposites. Typically, the photocatalytic efficiency of the Au-CdS with 62 nm sized Au nanocubes is about two times higher than that of the pure CdS. It is believed that the Au-CdS nanocomposites may find potential applications in environmental fields, and this synthesis method can be extended to prepare a wide variety of functional composites with Au cores.