电子回旋共振离子推力器(electron cyclotron resonance ion thruster,ECRIT)外部联结磁场是影响羽流中和过程以及中和器耦合电压的因素之一。联结磁场随离子源和中和器安装方位及其内部磁极方向的不同而不同,计算联结磁场分布规律、实...电子回旋共振离子推力器(electron cyclotron resonance ion thruster,ECRIT)外部联结磁场是影响羽流中和过程以及中和器耦合电压的因素之一。联结磁场随离子源和中和器安装方位及其内部磁极方向的不同而不同,计算联结磁场分布规律、实验研究磁场对羽流中和的影响是非常重要的工作。针对离子源的2个功率和2个流量,加速电压350~1450 V内,开展中和实验,研究离子源与中和器磁极方向和位置关系的变化对离子束流引出和最高耦合电压大小的影响规律。结果表明,离子束流引出不受磁极方向和离子源与中和器安装方位的影响。离子源与中和器相对垂直安装时能降低中和器耦合电压,同时通过改变中和器磁极方向使其与离子源磁极方向相反也能降低中和器耦合电压。当离子源与中和器磁极方向相反且垂直安装时,中和器耦合电压最低。展开更多
Through diagnosing the plasma density and calculating the intensity of microwave electric field,four 10 cm electron cyclotron resonance(ECR)ion sources with different magnetic field structures are studied to reveal th...Through diagnosing the plasma density and calculating the intensity of microwave electric field,four 10 cm electron cyclotron resonance(ECR)ion sources with different magnetic field structures are studied to reveal the inside interaction between the plasma,magnetic field and microwave electric field.From the diagnosing result it can be found that the plasma density distribution is controlled by the plasma generation and electron loss volumes associated with the magnetic field and microwave power level.Based on the cold plasma hypothesis and diagnosing result,the microwave electric field intensity distribution in the plasma is calculated.The result shows that the plasma will significantly change the distribution of the microwave electric field intensity to form a bow shape.From the boundary region of the shape to the center,the electric field intensity varies from higher to lower and the diagnosed density inversely changes.If the bow and its inside lower electric field intensity region are close to the screen grid,the performance of ion beam extracting will be better.The study can provide useful information for the creating of 10 cm ECR ion source and understanding its mechanism.展开更多
基金Supported by National Natural Science Foundation of China(11933006)the Frontier Science Research Project(Key Programs)of the Chinese Academy of Sciences(QYZDJ-SSW-SLH018)。
基金the National Natural Science Foundation of China(Grant No.11875222)。
文摘Through diagnosing the plasma density and calculating the intensity of microwave electric field,four 10 cm electron cyclotron resonance(ECR)ion sources with different magnetic field structures are studied to reveal the inside interaction between the plasma,magnetic field and microwave electric field.From the diagnosing result it can be found that the plasma density distribution is controlled by the plasma generation and electron loss volumes associated with the magnetic field and microwave power level.Based on the cold plasma hypothesis and diagnosing result,the microwave electric field intensity distribution in the plasma is calculated.The result shows that the plasma will significantly change the distribution of the microwave electric field intensity to form a bow shape.From the boundary region of the shape to the center,the electric field intensity varies from higher to lower and the diagnosed density inversely changes.If the bow and its inside lower electric field intensity region are close to the screen grid,the performance of ion beam extracting will be better.The study can provide useful information for the creating of 10 cm ECR ion source and understanding its mechanism.