期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
改进YOLOv8的矿井人员防护装备实时监测方法研究 被引量:3
1
作者 张磊 孙志鹏 +3 位作者 陶虹京 郝尚凯 燕倩如 李熙尉 《煤炭科学技术》 北大核心 2025年第S1期354-365,共12页
穿戴个人防护装备是保障矿井人员作业安全的重要手段,开展矿井人员防护装备监测是煤矿安全管理的重要工作内容。煤矿井下环境较为复杂,视频监控易受到噪声、光照以及粉尘等因素干扰,导致现有的目标检测方法对矿井人员防护装备存在检测... 穿戴个人防护装备是保障矿井人员作业安全的重要手段,开展矿井人员防护装备监测是煤矿安全管理的重要工作内容。煤矿井下环境较为复杂,视频监控易受到噪声、光照以及粉尘等因素干扰,导致现有的目标检测方法对矿井人员防护装备存在检测精度低、实时性差、模型复杂度高等问题。为此,提出一种改进YOLOv8的矿井人员防护装备实时监测方法,称为DBE-YOLO。DBEYOLO模型首先在基准模型主干网络的CBS模块中结合可变形卷积(DCNv2)组成DBS模块,使卷积具有可变形能力,在采样时可以更贴近检测物体的真实形状和尺寸,更具有鲁棒性,有效提升了其对不同尺度目标的特征获取能力,有利于模型提取更多人员防护装备的特征信息,提高模型检测精度。其次在特征增强网络融合了加权双向特征金字塔机制(BiFPN),在多尺度特征融合过程中删除效率较低的特征传输节点,实现更高层次的融合,提高了对不同尺度特征的融合效率,同时BiFPN引入了一个可以学习的权值,有助于让网络学习不同输入特征的重要性。最后使用WIoUv3作为模型的损失函数,其通过动态分配梯度增益,重点关注普通锚框质量,在模型训练过程中减少了低质量锚框产生的有害梯度,进一步提升了模型性能。实验结果表明,DBE-YOLO模型在矿井人员防护装备监测中有着良好的效果,查准率、查全率、平均精度分别为93.1%、93.0%、95.8%,相较于基准模型分别提高0.8%,2.9%,2.9%,检测实时性提升到65 f·s^(-1),提高了8.3%,此外,参数量、浮点计算量、模型体积分别为2 M、6.6 G、4.4 MB,相较于原模型分别降低33.3%、18.5%、30.2%。使用煤矿现场作业视频监控对改进模型进行验证,其有效改善了漏检和误检问题,为提高矿井人员的作业安全提供了技术手段。 展开更多
关键词 可变形卷积 目标检测 损失函数 深度学习 实时监测
在线阅读 下载PDF
基于改进YOLOv5s的综采工作面人员检测算法 被引量:25
2
作者 张磊 李熙尉 +2 位作者 燕倩如 王浩盛 雷伟强 《中国安全科学学报》 CAS CSCD 北大核心 2023年第7期82-89,共8页
为了智能监控井工煤矿综采工作面危险区域人员闯入和安全帽佩戴问题,避免监控视频受粉尘干扰、光照不均等因素影响图像检测精度的问题,提出一种基于改进YOLOv5s的目标检测算法(简称YOLOv5s-DPE),并建立相关模型。首先,在颈部网络部分,... 为了智能监控井工煤矿综采工作面危险区域人员闯入和安全帽佩戴问题,避免监控视频受粉尘干扰、光照不均等因素影响图像检测精度的问题,提出一种基于改进YOLOv5s的目标检测算法(简称YOLOv5s-DPE),并建立相关模型。首先,在颈部网络部分,采用深度可分离卷积(DwConv)替换普通卷积,降低参数量和计算量;然后,引入改进的路径聚合网络(PANet)提升特征提取能力,替换边界框损失函数完全交并比(CIOU)为有效交并比(EIOU),提升检测准确率;最后,选取综采工作面视频中的人员图像进行检测,选取煤矿井下人员闯入和安全帽佩戴监控视频作为检测数据集,并进行训练和验证。结果表明:对比初始YOLOv5s算法模型,YOLOv5s-DPE算法模型的参数量下降14.2%,浮点数计算量下降7.6%,算法网络模型大小下降12.5%,均值平均精度(mAP)@0.5提升到93.7%,mAP@0.5∶0.95提升到65.8%,YOLOv5s-DPE模型对小目标检测效果更好,误检漏检等情况有所减少。 展开更多
关键词 YOLOv5s 综采工作面 检测算法 深度可分离卷积(DwConv) 有效交并比(EIOU) 路径聚合网络(PANet)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部