Au-TiO2 composite films with Au atom content varying from about 15% to 82% are prepared by co-sputtering technique. Both open- and closed-aperture Z-scan of the samples are performed in the femtosecond time region. A ...Au-TiO2 composite films with Au atom content varying from about 15% to 82% are prepared by co-sputtering technique. Both open- and closed-aperture Z-scan of the samples are performed in the femtosecond time region. A conversion of the nonlinear absorption from negative to positive is observed as the A u atom content increases due to the saturation of reverse saturable absorption. The nonlinear refractive index γ and effective nonlinear absorption coefficient βeff at the Au atom content of 54% are measured to be 1.6 × 10^-2 cm^2/GW and -2.6 ×10^3 cm/GW, respectively. The corresponding third-order optical nonlinearity X^(3) is about 6.3 × 10^-8 esu.展开更多
Straight single-line defect optical waveguides in photonic crystal slabs are designed by the plane wave expansion method and fabricated into silicon-on-insulator (SOI) wafer by 248-nm deep UV lithography. We present...Straight single-line defect optical waveguides in photonic crystal slabs are designed by the plane wave expansion method and fabricated into silicon-on-insulator (SOI) wafer by 248-nm deep UV lithography. We present an emcient way to measure the light transmission spectrum of the photonic crystal waveguide (PhC WG) at given polarization states. By employing the Mueller/Stokes method, we measure and analyse the light propagation properties of the PhC WG at different polarized states. It is shown that experimental results are in agreement with the simulation results of the three-dimensional finite-difference-time-domain method.展开更多
We present fabrication and experimental measurement of a series of photonic crystal waveguides. The complete devices consist of an injector taper down from 3 μm into a triangular-lattice air-hole single-line-defect w...We present fabrication and experimental measurement of a series of photonic crystal waveguides. The complete devices consist of an injector taper down from 3 μm into a triangular-lattice air-hole single-line-defect waveguide with lattice constant from 410nm to 470nm and normalized radius 0.31. We fabricate these devices on a silicon- on-insulator substrate and characterize them using a t unable laser source over a wavelength range from 1510 nm to 1640nm. A sharp attenuation at photonic crystal waveguide mode edge is observed for most structures. The edge of guided band is shifted about 30nm with the 10nm increase of the lattice constant, We obtain high-efficiency light propagation and broad flat spectrum response of the photonic crystal waveguides.展开更多
文摘Au-TiO2 composite films with Au atom content varying from about 15% to 82% are prepared by co-sputtering technique. Both open- and closed-aperture Z-scan of the samples are performed in the femtosecond time region. A conversion of the nonlinear absorption from negative to positive is observed as the A u atom content increases due to the saturation of reverse saturable absorption. The nonlinear refractive index γ and effective nonlinear absorption coefficient βeff at the Au atom content of 54% are measured to be 1.6 × 10^-2 cm^2/GW and -2.6 ×10^3 cm/GW, respectively. The corresponding third-order optical nonlinearity X^(3) is about 6.3 × 10^-8 esu.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60345008, 60537010, 60536030, and the National High Technology Research and Development Programme of China under Grant No 2005AA311030.
文摘Straight single-line defect optical waveguides in photonic crystal slabs are designed by the plane wave expansion method and fabricated into silicon-on-insulator (SOI) wafer by 248-nm deep UV lithography. We present an emcient way to measure the light transmission spectrum of the photonic crystal waveguide (PhC WG) at given polarization states. By employing the Mueller/Stokes method, we measure and analyse the light propagation properties of the PhC WG at different polarized states. It is shown that experimental results are in agreement with the simulation results of the three-dimensional finite-difference-time-domain method.
文摘We present fabrication and experimental measurement of a series of photonic crystal waveguides. The complete devices consist of an injector taper down from 3 μm into a triangular-lattice air-hole single-line-defect waveguide with lattice constant from 410nm to 470nm and normalized radius 0.31. We fabricate these devices on a silicon- on-insulator substrate and characterize them using a t unable laser source over a wavelength range from 1510 nm to 1640nm. A sharp attenuation at photonic crystal waveguide mode edge is observed for most structures. The edge of guided band is shifted about 30nm with the 10nm increase of the lattice constant, We obtain high-efficiency light propagation and broad flat spectrum response of the photonic crystal waveguides.