Based on the hot electron effect in a semiconductor, an overmoded resistive sensor for 0.3-0.4 THz band is investi-gated. The distribution of electromagnetic field components, voltage standing wave ratio (VSWR), and...Based on the hot electron effect in a semiconductor, an overmoded resistive sensor for 0.3-0.4 THz band is investi-gated. The distribution of electromagnetic field components, voltage standing wave ratio (VSWR), and the average electric field in the silicon block are obtained by using the three-dimensional finite-difference time-domain (FDTD) method. By adjusting several factors (such as the length, width, height and specific resistance of the silicon block) a novel sensor with optimal structural parameters that can be used as a power measurement device for high power terahertz pulse directly is proposed. The results show that the sensor has a relative sensitivity of about 0.24 kW 1, with a fluctuation of relative sensitivity of no more than ±22%, and the maximum of VSWR is 2.74 for 0.3-0.4 THz band.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61231003)
文摘Based on the hot electron effect in a semiconductor, an overmoded resistive sensor for 0.3-0.4 THz band is investi-gated. The distribution of electromagnetic field components, voltage standing wave ratio (VSWR), and the average electric field in the silicon block are obtained by using the three-dimensional finite-difference time-domain (FDTD) method. By adjusting several factors (such as the length, width, height and specific resistance of the silicon block) a novel sensor with optimal structural parameters that can be used as a power measurement device for high power terahertz pulse directly is proposed. The results show that the sensor has a relative sensitivity of about 0.24 kW 1, with a fluctuation of relative sensitivity of no more than ±22%, and the maximum of VSWR is 2.74 for 0.3-0.4 THz band.