针对现有优化算法在求解带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)时存在易陷入局部最优解和收敛速度慢等问题,提出了一种基于K均值聚类和改进大规模邻域搜索算法(K-means clustering algorithm and im...针对现有优化算法在求解带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)时存在易陷入局部最优解和收敛速度慢等问题,提出了一种基于K均值聚类和改进大规模邻域搜索算法(K-means clustering algorithm and improved large neighborhood search algorithm,K-means-ILNSA)。采用先聚类后优化的策略,利用K-means算法对待配送客户进行分组,以提高优化效率。采用遗传算法对聚类产生的每组客户进行单独优化,以初步规划配送路径。引入大规模邻域搜索(large neighborhood search,LNS)算法对配送路径进一步优化,以有效避免算法陷入局部最优解。实验结果表明:所提算法能够有效解决带时间窗的车辆路径问题,其生成的车辆总路程短,优化求解效率高。展开更多
文摘针对现有优化算法在求解带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)时存在易陷入局部最优解和收敛速度慢等问题,提出了一种基于K均值聚类和改进大规模邻域搜索算法(K-means clustering algorithm and improved large neighborhood search algorithm,K-means-ILNSA)。采用先聚类后优化的策略,利用K-means算法对待配送客户进行分组,以提高优化效率。采用遗传算法对聚类产生的每组客户进行单独优化,以初步规划配送路径。引入大规模邻域搜索(large neighborhood search,LNS)算法对配送路径进一步优化,以有效避免算法陷入局部最优解。实验结果表明:所提算法能够有效解决带时间窗的车辆路径问题,其生成的车辆总路程短,优化求解效率高。