在繁华城区修建地下建筑时,半盖挖法施工可以有效减小施工对城市交通以及邻近建筑物的影响,因此越来越受到人们的重视。结合苏州轨交工程实践,运用岩土分析有限元软件Plaxis Foundation 3D对半盖挖顺作地铁车站的施工全过程进行模拟。...在繁华城区修建地下建筑时,半盖挖法施工可以有效减小施工对城市交通以及邻近建筑物的影响,因此越来越受到人们的重视。结合苏州轨交工程实践,运用岩土分析有限元软件Plaxis Foundation 3D对半盖挖顺作地铁车站的施工全过程进行模拟。通过对具体工况下基坑的整体变形进行分析,研究开挖方案下基坑围护结构的力学行为,得出半盖挖顺作基坑开挖过程中围护结构变形的一般规律,对施工具有一定的指导意义。展开更多
为了研究新建墩台施工对邻近高铁桥墩基础的影响,首先基于小应变土体硬化模型(hardening soil model with small-strain stiffness,简称HSS模型),利用PLAXIS 3D有限元软件建立新建墩台施工全过程计算模型,然后分析邻近既有线高铁桥墩基...为了研究新建墩台施工对邻近高铁桥墩基础的影响,首先基于小应变土体硬化模型(hardening soil model with small-strain stiffness,简称HSS模型),利用PLAXIS 3D有限元软件建立新建墩台施工全过程计算模型,然后分析邻近既有线高铁桥墩基础土体位移特性,并与现场监测数据对比验证有限元计算模型的可靠性,最后计算分析墩台和桩体的位移情况。结果表明:基坑开挖过程模拟采用HSS模型,有助于有限元计算中获得较可靠的位移结果;既有高铁桥墩基础土体方面,水平向基坑方向最大水平位移1.53 mm,最大沉降5.49 mm。既有墩身和承台最大沉降量小于6 mm,墩承台总沉降和相邻墩承台差异沉降均小于规范限值。既有桩基础群桩外围顶部向四周产生位移,而中间桩顶部沉降较小,呈“开花式”位移状态。在新建墩台施工过程中,钻孔灌注桩的施工、钢板桩的插拔和基坑回填对既有高铁桥墩基础水平位移和沉降影响较大。展开更多
岩石在荷载作用下会产生破裂损伤,力学特性发生退化。为研究北山花岗岩在三轴压缩状态下的力学特性和破裂演化机制,采用MTS815 Flex Test GT和PCI-2声发射(AE)系统对北山花岗岩试样进行了三轴压缩试验,利用采集的声发射信号分析了试样...岩石在荷载作用下会产生破裂损伤,力学特性发生退化。为研究北山花岗岩在三轴压缩状态下的力学特性和破裂演化机制,采用MTS815 Flex Test GT和PCI-2声发射(AE)系统对北山花岗岩试样进行了三轴压缩试验,利用采集的声发射信号分析了试样的破裂演化机制,获得了北山花岗岩变形参数,并拟合得到了MohrCoulomb强度准则参数φ=53.25°,c=32.37 MPa,Hoek-Brown强度准则参数σc=173.23 MPa,mi=32.78,s=1,其中参数mi在低围压区间敏感性较强,在高围压区间拟合效果较好。试验结果表明:北山花岗岩的弹性模量与泊松比均随围压的增大呈非线性增长,当围压超过20 MPa时,泊松比趋于稳定;北山花岗岩三轴压缩应力-应变曲线峰前段主要分为初始压密、弹性变形、裂纹稳定扩展和裂纹非稳定扩展4个阶段;基于体积应变模型和体积应变法求得了各阶段分界点的特征应力,即裂隙闭合应力、起裂应力和裂纹损伤应力,特征应力均随围压增加而增大,起裂应力比为0.56~0.58,闭合应力比为0.32~0.44,损伤应力比0.73~0.87;试样的破坏形态主要为单面剪切破坏,且破裂角随围压增加而逐渐减小,低围压下张性劈裂对岩石破坏具有一定的影响,随着围压升高,劈裂成分逐渐减小破裂面趋于平整。展开更多
文摘在繁华城区修建地下建筑时,半盖挖法施工可以有效减小施工对城市交通以及邻近建筑物的影响,因此越来越受到人们的重视。结合苏州轨交工程实践,运用岩土分析有限元软件Plaxis Foundation 3D对半盖挖顺作地铁车站的施工全过程进行模拟。通过对具体工况下基坑的整体变形进行分析,研究开挖方案下基坑围护结构的力学行为,得出半盖挖顺作基坑开挖过程中围护结构变形的一般规律,对施工具有一定的指导意义。
文摘为了研究新建墩台施工对邻近高铁桥墩基础的影响,首先基于小应变土体硬化模型(hardening soil model with small-strain stiffness,简称HSS模型),利用PLAXIS 3D有限元软件建立新建墩台施工全过程计算模型,然后分析邻近既有线高铁桥墩基础土体位移特性,并与现场监测数据对比验证有限元计算模型的可靠性,最后计算分析墩台和桩体的位移情况。结果表明:基坑开挖过程模拟采用HSS模型,有助于有限元计算中获得较可靠的位移结果;既有高铁桥墩基础土体方面,水平向基坑方向最大水平位移1.53 mm,最大沉降5.49 mm。既有墩身和承台最大沉降量小于6 mm,墩承台总沉降和相邻墩承台差异沉降均小于规范限值。既有桩基础群桩外围顶部向四周产生位移,而中间桩顶部沉降较小,呈“开花式”位移状态。在新建墩台施工过程中,钻孔灌注桩的施工、钢板桩的插拔和基坑回填对既有高铁桥墩基础水平位移和沉降影响较大。