期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进MobileNet v3的苹果叶片病害识别研究
被引量:
1
1
作者
李豫晋
沈陆明
+2 位作者
何少芳
余文强
滕明洪
《江苏农业科学》
北大核心
2024年第12期224-231,共8页
为解决移动端和嵌入式设备中苹果叶片病害识别准确率不高、效率低下的问题,提出了一种新的基于MobileNet v3网络的分类模型,以实现更加高效和准确的苹果叶片病害识别。首先通过数据增广方法增强数据集,按照9∶1的比例划分训练集和验证集...
为解决移动端和嵌入式设备中苹果叶片病害识别准确率不高、效率低下的问题,提出了一种新的基于MobileNet v3网络的分类模型,以实现更加高效和准确的苹果叶片病害识别。首先通过数据增广方法增强数据集,按照9∶1的比例划分训练集和验证集;然后在MobileNet v3网络核心倒残差结构的升维部分引入全维动态卷积,以加强对不同维度注意力权重的学习,从而增强网络的拟合能力;最后在降维部分引入修改后的ConvNext Block模块,减少信息损失并增加全局感受野。采用PyTorch作为分类网络的深度学习框架,使用交叉熵损失函数作为分类任务的损失函数,Adam作为优化器,通过多组对比试验可知,MobileNet v1、MobileNet v2、ResNet34、MobileNet v3以及改进后的MobileNet v3 ODConvNext网络的准确率分别为94.5%、95.7%、97.2%、96.9%及97.5%。可见,MobileNet v3 ODConvNet网络拥有最高的Top-1准确率,相较于MobileNet v3网络和结构更为复杂的ResNet34网络分别提升了0.6、0.3百分点;在运算频率方面,相对于MobileNet v3网络仅增加了1.00×10^(6)次/s,并且仅为ResNet34网络参数量的11.84%。因此,该试验结果证明了改进后的MobileNet v3 ODConvNext模型具有更加轻量级和更高准确率的优点,满足在移动端真实场景下进行苹果叶片病害识别的要求,有助于苹果叶片病害的防治工作。
展开更多
关键词
苹果叶片
病害识别
MobileNet
v3
全维动态卷积
ConvNext
深度学习
在线阅读
下载PDF
职称材料
题名
基于改进MobileNet v3的苹果叶片病害识别研究
被引量:
1
1
作者
李豫晋
沈陆明
何少芳
余文强
滕明洪
机构
湖南农业大学
出处
《江苏农业科学》
北大核心
2024年第12期224-231,共8页
基金
湖南省自然科学基金(编号:2023JJ30304)。
文摘
为解决移动端和嵌入式设备中苹果叶片病害识别准确率不高、效率低下的问题,提出了一种新的基于MobileNet v3网络的分类模型,以实现更加高效和准确的苹果叶片病害识别。首先通过数据增广方法增强数据集,按照9∶1的比例划分训练集和验证集;然后在MobileNet v3网络核心倒残差结构的升维部分引入全维动态卷积,以加强对不同维度注意力权重的学习,从而增强网络的拟合能力;最后在降维部分引入修改后的ConvNext Block模块,减少信息损失并增加全局感受野。采用PyTorch作为分类网络的深度学习框架,使用交叉熵损失函数作为分类任务的损失函数,Adam作为优化器,通过多组对比试验可知,MobileNet v1、MobileNet v2、ResNet34、MobileNet v3以及改进后的MobileNet v3 ODConvNext网络的准确率分别为94.5%、95.7%、97.2%、96.9%及97.5%。可见,MobileNet v3 ODConvNet网络拥有最高的Top-1准确率,相较于MobileNet v3网络和结构更为复杂的ResNet34网络分别提升了0.6、0.3百分点;在运算频率方面,相对于MobileNet v3网络仅增加了1.00×10^(6)次/s,并且仅为ResNet34网络参数量的11.84%。因此,该试验结果证明了改进后的MobileNet v3 ODConvNext模型具有更加轻量级和更高准确率的优点,满足在移动端真实场景下进行苹果叶片病害识别的要求,有助于苹果叶片病害的防治工作。
关键词
苹果叶片
病害识别
MobileNet
v3
全维动态卷积
ConvNext
深度学习
分类号
S436.611.1 [农业科学—农业昆虫与害虫防治]
TP391.41 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进MobileNet v3的苹果叶片病害识别研究
李豫晋
沈陆明
何少芳
余文强
滕明洪
《江苏农业科学》
北大核心
2024
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部