期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于DCS-YOLOv8模型的红外图像目标检测方法
被引量:
3
1
作者
沈凌云
郎百和
+1 位作者
宋正勋
温智滔
《红外技术》
CSCD
北大核心
2024年第5期565-575,共11页
针对低信噪比与复杂任务场景下,YOLOv8模型对红外遮挡目标和弱小目标检测能力不足的问题,提出了改进的DCS-YOLOv8模型(DCN_C2f-CA-SIoU-YOLOv8)的目标检测方法。以YOLOv8框架为基础,主干网络构建了基于可变形卷积的轻量级DCN_C2f(Deform...
针对低信噪比与复杂任务场景下,YOLOv8模型对红外遮挡目标和弱小目标检测能力不足的问题,提出了改进的DCS-YOLOv8模型(DCN_C2f-CA-SIoU-YOLOv8)的目标检测方法。以YOLOv8框架为基础,主干网络构建了基于可变形卷积的轻量级DCN_C2f(Deformable Convolution Network)模块,自适应调整网络的视觉感受野,提高目标多尺度特征表示能力。特征融合网络引入基于坐标注意力机制CA(Coordinate Attention)的模块,通过捕捉多目标空间位置依赖关系,提高目标的定位准确性。改进基于SIoU(Scylla IoU)的位置回归损失函数,实现预测框与真实框之间的相对位移方向匹配,加快模型收敛速度并提升检测与定位精度。实验结果表明,相较于YOLOv8-n\s\m\l\x系列模型,DCS-YOLOv8在FLIR、OTCBVS与VEDAI测试集上平均精度均值mAP@0.5平均提高了6.8%、0.6%、4.0%,分别达到86.5%、99.0%与75.6%。同时,模型的推理速度满足红外目标检测任务的实时性要求。
展开更多
关键词
红外图像
目标检测
注意力机制
可变形卷积
多尺度特征
在线阅读
下载PDF
职称材料
基于CSE-YOLOv5的遥感图像目标检测方法
被引量:
1
2
作者
沈凌云
郎百和
+1 位作者
宋正勋
温智滔
《红外技术》
CSCD
北大核心
2023年第11期1187-1197,共11页
针对复杂任务场景中,目标检测存在的多尺度特征学习能力不足、检测精度与模型参数量难以平衡的问题,提出一种基于CSE-YOLOv5(CBAM-SPPF-EIoU-YOLOv5,CSE-YOLOv5)模型的目标检测方法。模型以YOLOv5主干网络框架为基础,在浅层引入卷积块...
针对复杂任务场景中,目标检测存在的多尺度特征学习能力不足、检测精度与模型参数量难以平衡的问题,提出一种基于CSE-YOLOv5(CBAM-SPPF-EIoU-YOLOv5,CSE-YOLOv5)模型的目标检测方法。模型以YOLOv5主干网络框架为基础,在浅层引入卷积块注意力机制层,以提高模型细化特征提取能力并抑制冗余信息干扰。在深层设计了串行结构空间金字塔快速池化层,改进了统计池化方法,实现了由浅入深地融合多尺度关键特征信息。此外,通过改进损失函数与优化锚框机制,进一步增强多尺度特征学习能力。实验结果显示,CSE-YOLOv5系列模型在公开数据集RSOD、DIOR和DOTA上表现出良好的性能。mAP@0.5的平均值分别为96.8%、92.0%和71.0%,而mAP@0.5:0.95的平均值分别为87.0%、78.5%和61.9%。此外,该模型的推理速度满足实时性要求。与YOLOv5系列模型相比,CSE-YOLOv5模型的性能显著提升,并且在与其他主流模型的比较中展现出更好的检测效果。
展开更多
关键词
遥感图像
目标检测
注意力机制
金字塔快速池化
多尺度目标
在线阅读
下载PDF
职称材料
题名
基于DCS-YOLOv8模型的红外图像目标检测方法
被引量:
3
1
作者
沈凌云
郎百和
宋正勋
温智滔
机构
太原工业学院电子工程系
长春理工大学电子信息工程学院
长春理工大学教育部学科创新引智基地(D
出处
《红外技术》
CSCD
北大核心
2024年第5期565-575,共11页
基金
山西省引进人才科技创新启动基金(21010123)
山西省高等院校大学生创新项目(S202314101195)
吉林省科技发展计划基金项目(YDZJ202102CXJD007)。
文摘
针对低信噪比与复杂任务场景下,YOLOv8模型对红外遮挡目标和弱小目标检测能力不足的问题,提出了改进的DCS-YOLOv8模型(DCN_C2f-CA-SIoU-YOLOv8)的目标检测方法。以YOLOv8框架为基础,主干网络构建了基于可变形卷积的轻量级DCN_C2f(Deformable Convolution Network)模块,自适应调整网络的视觉感受野,提高目标多尺度特征表示能力。特征融合网络引入基于坐标注意力机制CA(Coordinate Attention)的模块,通过捕捉多目标空间位置依赖关系,提高目标的定位准确性。改进基于SIoU(Scylla IoU)的位置回归损失函数,实现预测框与真实框之间的相对位移方向匹配,加快模型收敛速度并提升检测与定位精度。实验结果表明,相较于YOLOv8-n\s\m\l\x系列模型,DCS-YOLOv8在FLIR、OTCBVS与VEDAI测试集上平均精度均值mAP@0.5平均提高了6.8%、0.6%、4.0%,分别达到86.5%、99.0%与75.6%。同时,模型的推理速度满足红外目标检测任务的实时性要求。
关键词
红外图像
目标检测
注意力机制
可变形卷积
多尺度特征
Keywords
infrared images
object detection
attention mechanism
deformable convolution
multi-scale features
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
基于CSE-YOLOv5的遥感图像目标检测方法
被引量:
1
2
作者
沈凌云
郎百和
宋正勋
温智滔
机构
太原工业学院电子工程系
长春理工大学电子信息工程学院
教育部学科创新引智基地(D
出处
《红外技术》
CSCD
北大核心
2023年第11期1187-1197,共11页
基金
山西省引进人才科技创新启动基金(21010123)
山西省高等院校大学生创新项目(S202314101195)
吉林省科技发展计划基金(YDZJ202102CXJD007)。
文摘
针对复杂任务场景中,目标检测存在的多尺度特征学习能力不足、检测精度与模型参数量难以平衡的问题,提出一种基于CSE-YOLOv5(CBAM-SPPF-EIoU-YOLOv5,CSE-YOLOv5)模型的目标检测方法。模型以YOLOv5主干网络框架为基础,在浅层引入卷积块注意力机制层,以提高模型细化特征提取能力并抑制冗余信息干扰。在深层设计了串行结构空间金字塔快速池化层,改进了统计池化方法,实现了由浅入深地融合多尺度关键特征信息。此外,通过改进损失函数与优化锚框机制,进一步增强多尺度特征学习能力。实验结果显示,CSE-YOLOv5系列模型在公开数据集RSOD、DIOR和DOTA上表现出良好的性能。mAP@0.5的平均值分别为96.8%、92.0%和71.0%,而mAP@0.5:0.95的平均值分别为87.0%、78.5%和61.9%。此外,该模型的推理速度满足实时性要求。与YOLOv5系列模型相比,CSE-YOLOv5模型的性能显著提升,并且在与其他主流模型的比较中展现出更好的检测效果。
关键词
遥感图像
目标检测
注意力机制
金字塔快速池化
多尺度目标
Keywords
remote sensing images
target detection
attention mechanism
spatial pyramid pooling-fast
multi-scale target
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于DCS-YOLOv8模型的红外图像目标检测方法
沈凌云
郎百和
宋正勋
温智滔
《红外技术》
CSCD
北大核心
2024
3
在线阅读
下载PDF
职称材料
2
基于CSE-YOLOv5的遥感图像目标检测方法
沈凌云
郎百和
宋正勋
温智滔
《红外技术》
CSCD
北大核心
2023
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部