期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度学习YOLOV5网络模型的金枪鱼延绳钓电子监控系统目标检测应用
被引量:
23
1
作者
王书献
张胜茂
+5 位作者
朱文斌
孙永文
杨昱皞
隋江华
沈烈
沈介然
《大连海洋大学学报》
CAS
CSCD
北大核心
2021年第5期842-850,共9页
为评估金枪鱼延绳钓系统运行质量、降低人工成本,以及从金枪鱼延绳钓系统电子监控EMS系统中提取浮球、金枪鱼数量等信息,本文提出一种基于深度学习YOLOV5网络模型的金枪鱼延绳钓电子监控系统浮球及金枪鱼目标检测方法,从HNY722远洋渔船...
为评估金枪鱼延绳钓系统运行质量、降低人工成本,以及从金枪鱼延绳钓系统电子监控EMS系统中提取浮球、金枪鱼数量等信息,本文提出一种基于深度学习YOLOV5网络模型的金枪鱼延绳钓电子监控系统浮球及金枪鱼目标检测方法,从HNY722远洋渔船EMS系统视频监控数据中截取包含有目标浮球和金枪鱼的15578帧关键帧,将所有关键帧及其标记文件划分为14178个训练数据及1400个验证数据,基于YOLOV5s、YOLOV5l、YOLOV5m、YOLOV5x等4种YOLOV5神经网络模型,设计分组训练试验对比训练效果。结果表明:参与训练的4种神经网络模型均可完成金枪鱼延绳钓电子监控系统的目标检测任务,但网络模型的选择对广义交并比损失(GIoU loss)、目标检测损失(objectness loss)、准确率(precision)、召回率(recall)、多类别平均精度值(mAP)等参数具有显著性影响(P<0.05),对目标分类损失(classification loss)参数无显著性影响(P>0.05);检测效果表现较好的模型是YOLOV5l和YOLOV5m,二者的mAP@0.5值分别为99.1%和99.2%,召回率分别为98.4%和98.3%,但YOLOV5m网络模型在GIoU损失等表现上劣于YOLOV5l。研究表明,4种网络模型中YOLOV5l模型是最适合应用于金枪鱼延绳钓电子监控系统目标检测的网络模型。
展开更多
关键词
金枪鱼
延绳钓
YOLOV5神经网络
视频信息提取
在线阅读
下载PDF
职称材料
题名
基于深度学习YOLOV5网络模型的金枪鱼延绳钓电子监控系统目标检测应用
被引量:
23
1
作者
王书献
张胜茂
朱文斌
孙永文
杨昱皞
隋江华
沈烈
沈介然
机构
大连海洋大学航海与船舶工程学院
中国水产科学研究院东海水产研究所农业农村部远洋与极地渔业创新重点实验室
浙江省海洋水产研究所浙江省海洋渔业资源可持续利用技术研究重点实验室
深圳市联成远洋渔业有限公司
出处
《大连海洋大学学报》
CAS
CSCD
北大核心
2021年第5期842-850,共9页
基金
浙江省海洋渔业资源可持续利用技术研究重点实验室开放课题(2020KF001)
国家重点研发计划(2019YFD0901405,2019YFD0901402)
国家自然科学基金重点项目(61936014)。
文摘
为评估金枪鱼延绳钓系统运行质量、降低人工成本,以及从金枪鱼延绳钓系统电子监控EMS系统中提取浮球、金枪鱼数量等信息,本文提出一种基于深度学习YOLOV5网络模型的金枪鱼延绳钓电子监控系统浮球及金枪鱼目标检测方法,从HNY722远洋渔船EMS系统视频监控数据中截取包含有目标浮球和金枪鱼的15578帧关键帧,将所有关键帧及其标记文件划分为14178个训练数据及1400个验证数据,基于YOLOV5s、YOLOV5l、YOLOV5m、YOLOV5x等4种YOLOV5神经网络模型,设计分组训练试验对比训练效果。结果表明:参与训练的4种神经网络模型均可完成金枪鱼延绳钓电子监控系统的目标检测任务,但网络模型的选择对广义交并比损失(GIoU loss)、目标检测损失(objectness loss)、准确率(precision)、召回率(recall)、多类别平均精度值(mAP)等参数具有显著性影响(P<0.05),对目标分类损失(classification loss)参数无显著性影响(P>0.05);检测效果表现较好的模型是YOLOV5l和YOLOV5m,二者的mAP@0.5值分别为99.1%和99.2%,召回率分别为98.4%和98.3%,但YOLOV5m网络模型在GIoU损失等表现上劣于YOLOV5l。研究表明,4种网络模型中YOLOV5l模型是最适合应用于金枪鱼延绳钓电子监控系统目标检测的网络模型。
关键词
金枪鱼
延绳钓
YOLOV5神经网络
视频信息提取
Keywords
tuna
longline fishing
YOLOV5 neural network
video information extraction
分类号
S932.2 [农业科学—渔业资源]
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度学习YOLOV5网络模型的金枪鱼延绳钓电子监控系统目标检测应用
王书献
张胜茂
朱文斌
孙永文
杨昱皞
隋江华
沈烈
沈介然
《大连海洋大学学报》
CAS
CSCD
北大核心
2021
23
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部