An analytical variational method for the ground state of the biased quantum Rabi model in the ultra-strong coupling regime is presented. This analytical variational method can be obtained by a unitary transformation o...An analytical variational method for the ground state of the biased quantum Rabi model in the ultra-strong coupling regime is presented. This analytical variational method can be obtained by a unitary transformation or alternatively by assuming the form of the ground state wave function. The key of the method is to introduce a variational parameter λ,which can be determined by minimizing the energy functional. Using this method, we calculate the physical observables with high accuracy in comparison with the numerical exact ones. Our method evidently improves over the widely used general rotating-wave approximation(GRWA) in both qualitative and quantitative aspects.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674139,11604009,and 11704025)the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT-16R35)+1 种基金the Fundamental Research Funds for the Central Universities,Chinathe financial support of the Future and Emerging Technologies(FET)programme within the Seventh Framework Programme for Research of the European Commission,under FET-Open Grant No.618083(CNTQC)
文摘An analytical variational method for the ground state of the biased quantum Rabi model in the ultra-strong coupling regime is presented. This analytical variational method can be obtained by a unitary transformation or alternatively by assuming the form of the ground state wave function. The key of the method is to introduce a variational parameter λ,which can be determined by minimizing the energy functional. Using this method, we calculate the physical observables with high accuracy in comparison with the numerical exact ones. Our method evidently improves over the widely used general rotating-wave approximation(GRWA) in both qualitative and quantitative aspects.