期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于机器视觉的苹果园果实识别研究综述 被引量:12
1
作者 金保华 殷长魁 +1 位作者 张卫正 张伟伟 《轻工学报》 CAS 2019年第2期71-81,共11页
从基于颜色阈值、形状和纹理的果实识别,三维果实形态识别,夜间果实识别,基于机器学习的果实识别,阴影和遮挡影响下的果实识别5个方面,对基于机器视觉的苹果园果实识别研究现状进行了综述,认为上述研究所涉及的算法较为复杂,功能也很强... 从基于颜色阈值、形状和纹理的果实识别,三维果实形态识别,夜间果实识别,基于机器学习的果实识别,阴影和遮挡影响下的果实识别5个方面,对基于机器视觉的苹果园果实识别研究现状进行了综述,认为上述研究所涉及的算法较为复杂,功能也很强大.但鉴于视觉理论、图像处理技术和硬件条件等限制,以及苹果园复杂多变的环境,基于机器视觉的果实识别目前尚无理想的方法,未来的研究重点应包括:1)加强更有效的图像增强、图像分割和特征提取等算法的研究,有效解决果实重叠、遮挡、颜色和光线变化的影响;完善白天和夜间果园现场作业的识别算法,建成全天候作业采摘机器人.2)加强基于自监督学习的果实识别的研究,以增加模型接收的反馈信息和模型表征的复杂的适用任务类型,减少任务中涉及的人类手工劳动比重,提高自动化程度.3)加强图像的自动获取与果实识别的研究,结合计算机视觉与近红外、激光雷达等检测技术,集成多模态的图像和非图像信息进行果实识别,提高处理速度和实时性,以及识别的准确度及系统的稳健性,为苹果自动采摘、果园的精准管理提供借鉴. 展开更多
关键词 机器视觉 苹果园 果实识别 图像处理 机器学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部