当电网出现有功缺额并导致频率跌落时,风电机组可以通过释放自身轴系动能为电网提供短时频率支撑(short-term frequency support,STFS)。如何利用有限的风电机组轴系动能最大限度地支撑电网频率,是当前研究的热点问题。针对风电机组可...当电网出现有功缺额并导致频率跌落时,风电机组可以通过释放自身轴系动能为电网提供短时频率支撑(short-term frequency support,STFS)。如何利用有限的风电机组轴系动能最大限度地支撑电网频率,是当前研究的热点问题。针对风电机组可释放动能和电网频率变化率约束下的电网最大频率偏差最小化问题,该文提出一种基于有功功率互补控制(active-power complementation control,ACC)的风电机组STFS策略,揭示STFS过程中风电机组的最小动能释放机理,并证明采用ACC释放全部轴系动能的STFS策略为上述问题的最优解。最后,基于含风电的电网动模实验平台的实验结果验证该文提出STFS策略的可行性与频率支撑效果。展开更多
针对具有大转动惯量和宽最大功率点跟踪(maximum power point tracking,MPPT)区间的风电机组,发现了一种在传统MPPT控制策略下出现的风机MPPT失效现象。基于对简化风机模型的平衡点及加速/减速区域的分析,从机理上解释了MPPT失效现象的...针对具有大转动惯量和宽最大功率点跟踪(maximum power point tracking,MPPT)区间的风电机组,发现了一种在传统MPPT控制策略下出现的风机MPPT失效现象。基于对简化风机模型的平衡点及加速/减速区域的分析,从机理上解释了MPPT失效现象的产生原因,即风机的慢动态性能难以跟踪风速的快速波动。进一步,针对多种容量风电机组的仿真统计分析表明,该MPPT失效现象的发生及其对风能利用系数的降低是不能忽视的。特别是在高湍流强度的风速条件下,MPPT失效导致的风能捕获损失率可能高达10%以上。展开更多
电力系统迫切需要风电机组(简称风机)从最大功率点跟踪控制转变为支撑电网二次调频的有功功率控制(active power control,APC)。延续最大功率点跟踪控制的设计思路,现有风机APC控制研究大多基于系统稳态的视角,将风机控制到稳定平衡点,...电力系统迫切需要风电机组(简称风机)从最大功率点跟踪控制转变为支撑电网二次调频的有功功率控制(active power control,APC)。延续最大功率点跟踪控制的设计思路,现有风机APC控制研究大多基于系统稳态的视角,将风机控制到稳定平衡点,在稳定平衡点处响应电网指令和维持机电动态稳定。但面对湍流风速,大惯量风轮实际上处于不断变速的动态过程中,而非持续运行在稳定平衡点处,对APC控制性能造成不容忽视的影响。为此该文从现有风机APC控制策略中归纳出两种风轮变速运行模式:主动变速和被动变速,两者对应于截然不同的变速机理和动态过程。运用频域分析和实验数据分析,比较了两种变速运行模式在功率指令响应性能、传动链载荷及变桨执行机构疲劳载荷方面的差异。结果表明,被动变速放弃了对稳定平衡点的跟踪,利用风轮惯性响应缓冲风速波动,更适用于湍流风速场景。该文工作为风机APC控制设计与性能优化提供了风机运行机理方面的基础。展开更多
针对爬山法(hill-climbing searching,HCS)在最大功率点(maximum power point,MPP)处存在的转速振荡和风速变化导致搜索方向误判的问题,提出1种具有扰动停止机制的改进爬山算法。该算法不仅继承了变步长爬山法快速搜索至MPP附近的优点,...针对爬山法(hill-climbing searching,HCS)在最大功率点(maximum power point,MPP)处存在的转速振荡和风速变化导致搜索方向误判的问题,提出1种具有扰动停止机制的改进爬山算法。该算法不仅继承了变步长爬山法快速搜索至MPP附近的优点,还具有MPP检测和停止机制。在风机跟踪至MPP附近时,该机制不仅可以有效降低转速振荡对风机系统机械部件的磨损,而且克服了算法停止机制生效后风速再次变化时对搜索方向判断的干扰,从而进一步提高了风能捕获效率。在简化风电系统模型的基础上,仿真结果验证了该算法的有效性和优越性。展开更多
以高压直流输电(high-voltage direct current transmission,HVDC)为代表的直流输电技术的广泛应用为停电电网恢复路径优化问题提出了新的挑战。现有电网停电恢复路径优化研究未考虑在优化过程中将HVDC作为恢复电源。由此,该文对HVDC参...以高压直流输电(high-voltage direct current transmission,HVDC)为代表的直流输电技术的广泛应用为停电电网恢复路径优化问题提出了新的挑战。现有电网停电恢复路径优化研究未考虑在优化过程中将HVDC作为恢复电源。由此,该文对HVDC参与的电网恢复路径优化方法进行了研究。首先,分析了HVDC对电网恢复的作用及恢复过程中的特性,结合停电系统恢复的要求,提出了HVDC参与的电网恢复路径优化模型;其次,针对恢复路径搜索速度问题,提出了基于序优化理论的优化求解方法,对HVDC启动的电压约束和系统潮流约束进行简化,建立粗糙评估模型;最后,采用IEEE39节点系统和江苏局部电网分析了优化模型和求解方法的有效性。展开更多
文摘当电网出现有功缺额并导致频率跌落时,风电机组可以通过释放自身轴系动能为电网提供短时频率支撑(short-term frequency support,STFS)。如何利用有限的风电机组轴系动能最大限度地支撑电网频率,是当前研究的热点问题。针对风电机组可释放动能和电网频率变化率约束下的电网最大频率偏差最小化问题,该文提出一种基于有功功率互补控制(active-power complementation control,ACC)的风电机组STFS策略,揭示STFS过程中风电机组的最小动能释放机理,并证明采用ACC释放全部轴系动能的STFS策略为上述问题的最优解。最后,基于含风电的电网动模实验平台的实验结果验证该文提出STFS策略的可行性与频率支撑效果。
文摘针对具有大转动惯量和宽最大功率点跟踪(maximum power point tracking,MPPT)区间的风电机组,发现了一种在传统MPPT控制策略下出现的风机MPPT失效现象。基于对简化风机模型的平衡点及加速/减速区域的分析,从机理上解释了MPPT失效现象的产生原因,即风机的慢动态性能难以跟踪风速的快速波动。进一步,针对多种容量风电机组的仿真统计分析表明,该MPPT失效现象的发生及其对风能利用系数的降低是不能忽视的。特别是在高湍流强度的风速条件下,MPPT失效导致的风能捕获损失率可能高达10%以上。
文摘电力系统迫切需要风电机组(简称风机)从最大功率点跟踪控制转变为支撑电网二次调频的有功功率控制(active power control,APC)。延续最大功率点跟踪控制的设计思路,现有风机APC控制研究大多基于系统稳态的视角,将风机控制到稳定平衡点,在稳定平衡点处响应电网指令和维持机电动态稳定。但面对湍流风速,大惯量风轮实际上处于不断变速的动态过程中,而非持续运行在稳定平衡点处,对APC控制性能造成不容忽视的影响。为此该文从现有风机APC控制策略中归纳出两种风轮变速运行模式:主动变速和被动变速,两者对应于截然不同的变速机理和动态过程。运用频域分析和实验数据分析,比较了两种变速运行模式在功率指令响应性能、传动链载荷及变桨执行机构疲劳载荷方面的差异。结果表明,被动变速放弃了对稳定平衡点的跟踪,利用风轮惯性响应缓冲风速波动,更适用于湍流风速场景。该文工作为风机APC控制设计与性能优化提供了风机运行机理方面的基础。
文摘针对爬山法(hill-climbing searching,HCS)在最大功率点(maximum power point,MPP)处存在的转速振荡和风速变化导致搜索方向误判的问题,提出1种具有扰动停止机制的改进爬山算法。该算法不仅继承了变步长爬山法快速搜索至MPP附近的优点,还具有MPP检测和停止机制。在风机跟踪至MPP附近时,该机制不仅可以有效降低转速振荡对风机系统机械部件的磨损,而且克服了算法停止机制生效后风速再次变化时对搜索方向判断的干扰,从而进一步提高了风能捕获效率。在简化风电系统模型的基础上,仿真结果验证了该算法的有效性和优越性。
文摘以高压直流输电(high-voltage direct current transmission,HVDC)为代表的直流输电技术的广泛应用为停电电网恢复路径优化问题提出了新的挑战。现有电网停电恢复路径优化研究未考虑在优化过程中将HVDC作为恢复电源。由此,该文对HVDC参与的电网恢复路径优化方法进行了研究。首先,分析了HVDC对电网恢复的作用及恢复过程中的特性,结合停电系统恢复的要求,提出了HVDC参与的电网恢复路径优化模型;其次,针对恢复路径搜索速度问题,提出了基于序优化理论的优化求解方法,对HVDC启动的电压约束和系统潮流约束进行简化,建立粗糙评估模型;最后,采用IEEE39节点系统和江苏局部电网分析了优化模型和求解方法的有效性。