Recently,the theoretically predicted lanthanum superhydride,LaH 10±δ,with a clathrate-like structure was successfully synthesized and found to exhibit a record high superconducting transition temperature T c≈25...Recently,the theoretically predicted lanthanum superhydride,LaH 10±δ,with a clathrate-like structure was successfully synthesized and found to exhibit a record high superconducting transition temperature T c≈250 K at∼170 GPa,opening a new route for room-temperature superconductivity.However,since in situ experiments at megabar pressures are very challenging,few groups have reported the∼250 K superconducting transition in LaH 10±δ.Here,we establish a simpler sample-loading procedure that allows a relatively large sample size for synthesis and a standard four-probe configuration for resistance measurements.Following this procedure,we successfully synthesized LaH 10±δwith dimensions up to 10×20μm^2 by laser heating a thin La flake and ammonia borane at∼1700 K in a symmetric diamond anvil cell under the pressure of 165 GPa.The superconducting transition at T c≈250 K was confirmed through resistance measurements under various magnetic fields.Our method will facilitate explorations of near-room-temperature superconductors among metal superhydrides.展开更多
A novel CaCu_3Cu_2Ir_2O_(12-δ) polycrystalline sample was synthesized at 8 GPa and 1373 K.Rietveld structural analysis shows that this compound crystallizes in an AA'_3B_4O_(12)-type A-site ordered perovskite st...A novel CaCu_3Cu_2Ir_2O_(12-δ) polycrystalline sample was synthesized at 8 GPa and 1373 K.Rietveld structural analysis shows that this compound crystallizes in an AA'_3B_4O_(12)-type A-site ordered perovskite structure with space group Im-3.Xray absorption spectra reveal a +2-charge state for both the square-planar and octahedral coordinated Cu ions,and the valence state of Ir is found to be about +5.Although the A-site Ca and the A'-site Cu^(2+) are 1:3 ordered at fixed atomic positions,the distribution of B-site Cu^(2+) and Ir^(5+) is disorderly.As a result,no long-range magnetic ordering is observed at temperatures down to 2 K.Electrical transport and heat capacity measurements demonstrate itinerant electronic behavior.The crystal structure is stable with pressure up to 35.7 GPa at room temperature.展开更多
As one of important members of refractory materials,tungsten phosphide(WP)holds great potential for fundamental study and industrial applications in many fields of science and technology,due to its excellent propertie...As one of important members of refractory materials,tungsten phosphide(WP)holds great potential for fundamental study and industrial applications in many fields of science and technology,due to its excellent properties such as superconductivity and as-predicted topological band structure.However,synthesis of high-quality WP crystals is still a challenge by using tradition synthetic methods,because the synthesis temperature for growing its large crystals is very stringently required to be as high as 3000℃,which is far beyond the temperature capability of most laboratory-based devices for crystal growth.In addition,high temperature often induces the decomposition of metal phosphides,leading to off-stoichiometric samples based on which the materials'intrinsic properties cannot be explored.In this work,we report a high-pressure synthesis of single-crystal WP through a direct crystallization from cooling the congruent W-P melts at 5 GPa and^3200℃.In combination of x-ray diffraction,electron microscope,and thermal analysis,the crystal structure,morphology,and stability of recovered sample are well investigated.The final product is phase-pure and nearly stoichiometric WP in a single-crystal form with a large grain size,in excess of one millimeter,thus making it feasible to implement most experimental measurements,especially,for the case where a large crystal is required.Success in synthesis of high-quality WP crystals at high pressure can offer great opportunities for determining their intrinsic properties and also making more efforts to study the family of transition-metal phosphides.展开更多
A high-quality SrFe0.8Co0.2O3 single crystal is prepared by combining floating-zone and high-pressure treatment methods. Its Magnetocaloric effect is investigated by magnetic measurements. A paramagnetism-to-ferromagn...A high-quality SrFe0.8Co0.2O3 single crystal is prepared by combining floating-zone and high-pressure treatment methods. Its Magnetocaloric effect is investigated by magnetic measurements. A paramagnetism-to-ferromagnetism tran- sition is found at about 270 K and this transition is a second-order one in nature as confirmed by Arrott plots. The saturated moment obtained at 2 K and 7 T is 3.63 μB/f.u. The maximal value of magnetic entropy change measured at 5 T is about 4.0 J·kg-1 ·K-1. The full wide at half maximum for a magnetic entropy change peak observed in SrFe0.8Co0.2O3 is considerably large. As a consequence, the relative cooling power value of SrFe0.8Co0.2O3 obtained at 5 T is 331 J/kg, which is greatly higher than those observed in other perovskite oxides. The present work therefore provides a promising candidate for magnetic refrigeration near room temperature.展开更多
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB33000000 and XDB25000000)the Beijing Natural Science Foundation(Grant No.Z190008)+2 种基金the National Natural Science Foundation of China(Grant Nos.11575288, 11921004, 11888101, 11904391, 11834016 and 11874400)the National Key R&D Program of China(Grant Nos.2016YFA0401503 and 2018YFA0305700)the Youth Innovation Promotion Association,the Key Research Program of Frontier Sciences and the Interdisciplinary Innovation Team of Chinese Academy of Sciences(Grant Nos.2016006, JCTD-2019-01,and QYZDBSSW-SLH013)
文摘Recently,the theoretically predicted lanthanum superhydride,LaH 10±δ,with a clathrate-like structure was successfully synthesized and found to exhibit a record high superconducting transition temperature T c≈250 K at∼170 GPa,opening a new route for room-temperature superconductivity.However,since in situ experiments at megabar pressures are very challenging,few groups have reported the∼250 K superconducting transition in LaH 10±δ.Here,we establish a simpler sample-loading procedure that allows a relatively large sample size for synthesis and a standard four-probe configuration for resistance measurements.Following this procedure,we successfully synthesized LaH 10±δwith dimensions up to 10×20μm^2 by laser heating a thin La flake and ammonia borane at∼1700 K in a symmetric diamond anvil cell under the pressure of 165 GPa.The superconducting transition at T c≈250 K was confirmed through resistance measurements under various magnetic fields.Our method will facilitate explorations of near-room-temperature superconductors among metal superhydrides.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB921500)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07030300)the National Natural Science Foundation of China(Grant No.11574378)
文摘A novel CaCu_3Cu_2Ir_2O_(12-δ) polycrystalline sample was synthesized at 8 GPa and 1373 K.Rietveld structural analysis shows that this compound crystallizes in an AA'_3B_4O_(12)-type A-site ordered perovskite structure with space group Im-3.Xray absorption spectra reveal a +2-charge state for both the square-planar and octahedral coordinated Cu ions,and the valence state of Ir is found to be about +5.Although the A-site Ca and the A'-site Cu^(2+) are 1:3 ordered at fixed atomic positions,the distribution of B-site Cu^(2+) and Ir^(5+) is disorderly.As a result,no long-range magnetic ordering is observed at temperatures down to 2 K.Electrical transport and heat capacity measurements demonstrate itinerant electronic behavior.The crystal structure is stable with pressure up to 35.7 GPa at room temperature.
基金the National Key Research and Development Program of China(Grant Nos.2016YFA0401503 and 2018YFA0305700)the National Natural Science Foundation of China(Grant No.11575288)+4 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2016006)the Key Research Platforms and Research Projects of Universities in Guangdong Province,China(Grant No.2018KZDXM062)the Guangdong Innovative&Entrepreneurial Research Team Program,China(Grant No.2016ZT06C279)the Shenzhen Peacock Plan,China(Grant No.KQTD2016053019134356)the Shenzhen Development&Reform Commission Foundation for Novel Nano-Material Sciences,China,the Research Platform for Crystal Growth&Thin-Film Preparation at SUST,China,and the Shenzhen Development and Reform Commission Foundation for Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressure,China.
文摘As one of important members of refractory materials,tungsten phosphide(WP)holds great potential for fundamental study and industrial applications in many fields of science and technology,due to its excellent properties such as superconductivity and as-predicted topological band structure.However,synthesis of high-quality WP crystals is still a challenge by using tradition synthetic methods,because the synthesis temperature for growing its large crystals is very stringently required to be as high as 3000℃,which is far beyond the temperature capability of most laboratory-based devices for crystal growth.In addition,high temperature often induces the decomposition of metal phosphides,leading to off-stoichiometric samples based on which the materials'intrinsic properties cannot be explored.In this work,we report a high-pressure synthesis of single-crystal WP through a direct crystallization from cooling the congruent W-P melts at 5 GPa and^3200℃.In combination of x-ray diffraction,electron microscope,and thermal analysis,the crystal structure,morphology,and stability of recovered sample are well investigated.The final product is phase-pure and nearly stoichiometric WP in a single-crystal form with a large grain size,in excess of one millimeter,thus making it feasible to implement most experimental measurements,especially,for the case where a large crystal is required.Success in synthesis of high-quality WP crystals at high pressure can offer great opportunities for determining their intrinsic properties and also making more efforts to study the family of transition-metal phosphides.
基金supported by the National Basic Research Program of China(Grant No.2014CB921500)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07030300)
文摘A high-quality SrFe0.8Co0.2O3 single crystal is prepared by combining floating-zone and high-pressure treatment methods. Its Magnetocaloric effect is investigated by magnetic measurements. A paramagnetism-to-ferromagnetism tran- sition is found at about 270 K and this transition is a second-order one in nature as confirmed by Arrott plots. The saturated moment obtained at 2 K and 7 T is 3.63 μB/f.u. The maximal value of magnetic entropy change measured at 5 T is about 4.0 J·kg-1 ·K-1. The full wide at half maximum for a magnetic entropy change peak observed in SrFe0.8Co0.2O3 is considerably large. As a consequence, the relative cooling power value of SrFe0.8Co0.2O3 obtained at 5 T is 331 J/kg, which is greatly higher than those observed in other perovskite oxides. The present work therefore provides a promising candidate for magnetic refrigeration near room temperature.