Wavelength-dependent AC Stark shifts and magic wavelengths of the terahertz clock transitions between the metastable triplet states 6s5d3D1 and 6s5d3D2are investigated with considering the optical lattice trapping of ...Wavelength-dependent AC Stark shifts and magic wavelengths of the terahertz clock transitions between the metastable triplet states 6s5d3D1 and 6s5d3D2are investigated with considering the optical lattice trapping of barium atoms with the linearly polarized laser. The trap depths and the slopes of light shift difference with distinct magic wavelengths of the optical lattices are also discussed in detail. Several potentially suitable working points for the optical lattice trapping laser are recommended and selected from these magic wavelengths.展开更多
Magic wavelengths for laser trapping of barium atoms in the optical clock transition at l107nm between the 6s2 1So state optical lattices are calculated with considering the and 6s5d 3D1 state. Theoretical calculation...Magic wavelengths for laser trapping of barium atoms in the optical clock transition at l107nm between the 6s2 1So state optical lattices are calculated with considering the and 6s5d 3D1 state. Theoretical calculation shows that there are several magic wavelengths with the linearly polarized trapping laser. The trap depths of the optical lattice and the slope of light shift difference with different magic wavelengths are also calculated, Some of these magic wavelengths are selected and recommended as potentially suitable magic wavelengths for the optical lattice trapping laser.展开更多
We investigate the charge and spin gaps, and the spin structure in half-filled one-dimensional Hubbard superlattices with one repulsive site and L0 free sites per unit cell. For odd L0, it is correlated metal at the p...We investigate the charge and spin gaps, and the spin structure in half-filled one-dimensional Hubbard superlattices with one repulsive site and L0 free sites per unit cell. For odd L0, it is correlated metal at the particle–hole symmetric point, and then turns into band insulator beyond this point. For even L0, the system has a Mott insulator phase around the particle–hole symmetric point and undergoes a metal–insulator transition with on-site repulsion U increasing. For large U,there exists a multiperiodic spin structure, which results from the ferromagnetic(antiferromagnetic) correlation between the nearest neighboring repulsive sites for odd(even) L0.展开更多
The isotope shifts of the 282 1S0 to 2s2p 1P1 and 3P1 transitions in the four-electron beryllium atom are calcu- lated by using the multi-configuration Dirac-Hartrce-Fock method and the relativistic configuration inte...The isotope shifts of the 282 1S0 to 2s2p 1P1 and 3P1 transitions in the four-electron beryllium atom are calcu- lated by using the multi-configuration Dirac-Hartrce-Fock method and the relativistic configuration interaction approach for the stable and short-Bved beryllium isotopes. The results provided herein can be employed for the consistency check with the nuclear rms charge radii from the experimental isotope shifts by using the correspond- ing transitions for the short-lived nuclei 7,10-12Be and 14 Be. The analogous isotope shift results could also be obtained for the beryllium-like ions by the methods used here.展开更多
基金Project supported by the Science Fund from the Shaanxi Provincial Education Department,China(Grant No.14JK1402)
文摘Wavelength-dependent AC Stark shifts and magic wavelengths of the terahertz clock transitions between the metastable triplet states 6s5d3D1 and 6s5d3D2are investigated with considering the optical lattice trapping of barium atoms with the linearly polarized laser. The trap depths and the slopes of light shift difference with distinct magic wavelengths of the optical lattices are also discussed in detail. Several potentially suitable working points for the optical lattice trapping laser are recommended and selected from these magic wavelengths.
基金Supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department under Grant No 14JK1402
文摘Magic wavelengths for laser trapping of barium atoms in the optical clock transition at l107nm between the 6s2 1So state optical lattices are calculated with considering the and 6s5d 3D1 state. Theoretical calculation shows that there are several magic wavelengths with the linearly polarized trapping laser. The trap depths of the optical lattice and the slope of light shift difference with different magic wavelengths are also calculated, Some of these magic wavelengths are selected and recommended as potentially suitable magic wavelengths for the optical lattice trapping laser.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.50573059 and 10874132)
文摘We investigate the charge and spin gaps, and the spin structure in half-filled one-dimensional Hubbard superlattices with one repulsive site and L0 free sites per unit cell. For odd L0, it is correlated metal at the particle–hole symmetric point, and then turns into band insulator beyond this point. For even L0, the system has a Mott insulator phase around the particle–hole symmetric point and undergoes a metal–insulator transition with on-site repulsion U increasing. For large U,there exists a multiperiodic spin structure, which results from the ferromagnetic(antiferromagnetic) correlation between the nearest neighboring repulsive sites for odd(even) L0.
基金Supported by the Scientific Research Program Funded by Shaanxi Provincial Education Department under Grant No 14JK1402
文摘The isotope shifts of the 282 1S0 to 2s2p 1P1 and 3P1 transitions in the four-electron beryllium atom are calcu- lated by using the multi-configuration Dirac-Hartrce-Fock method and the relativistic configuration interaction approach for the stable and short-Bved beryllium isotopes. The results provided herein can be employed for the consistency check with the nuclear rms charge radii from the experimental isotope shifts by using the correspond- ing transitions for the short-lived nuclei 7,10-12Be and 14 Be. The analogous isotope shift results could also be obtained for the beryllium-like ions by the methods used here.