期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于图谱域特征的对抗攻击算法
1
作者 姚毅 欧阳瑞琦 +1 位作者 欧卫华 熊嘉豪 《贵州师范大学学报(自然科学版)》 北大核心 2025年第5期84-91,共8页
图神经网络(Graph neural networks,GNNs)通过聚合机制学习节点和边的表征,在图节点分类、子图分割等多种下游任务取得了重大进展,成为近年来国际研究前沿和热点。最近研究结果表明,图神经网络极易受到对抗攻击影响,导致得到错误的结果... 图神经网络(Graph neural networks,GNNs)通过聚合机制学习节点和边的表征,在图节点分类、子图分割等多种下游任务取得了重大进展,成为近年来国际研究前沿和热点。最近研究结果表明,图神经网络极易受到对抗攻击影响,导致得到错误的结果。然而现有图对抗攻击主要聚焦于降低模型性能,忽略了图的谱域特征,往往得到次优攻击结果。针对此问题,提出一种基于图谱域特征的对抗攻击算法。具体来说,利用图谱域特征值和特征向量计算攻击前后图谱域特征空间偏移量,最大化攻击扰动前后的图谱域输出变化,进而通过投影梯度下降求解得到最优的扰动攻击。3个公开数据集上对比实验结果验证了此方法的可行性和有效性。 展开更多
关键词 图神经网络 对抗攻击 图谱距离 特征向量
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部