期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于时间关系的Bi-LSTM+GCN因果关系抽取 被引量:11
1
作者 郑余祥 左祥麟 +2 位作者 左万利 梁世宁 王英 《吉林大学学报(理学版)》 CAS 北大核心 2021年第3期643-648,共6页
针对传统时间关系只应用在机器学习方向关系抽取的问题,提出一种基于序列标注实体识别的关系抽取方法.先构建双向长短期记忆网络(Bi-LSTM)模型进行特征提取,再输入时间关系作为特征矩阵进行图卷积.实验结果表明:时间关系能提高因果关系... 针对传统时间关系只应用在机器学习方向关系抽取的问题,提出一种基于序列标注实体识别的关系抽取方法.先构建双向长短期记忆网络(Bi-LSTM)模型进行特征提取,再输入时间关系作为特征矩阵进行图卷积.实验结果表明:时间关系能提高因果关系抽取效果,并且包含时间关系的Bi-LSTM+GCN模型能有效抽取因果事件;带有时间关系的Bi-LSTM+GCN模型获得因果关系的抽取结果优于传统方法因果关系的抽取结果. 展开更多
关键词 因果关系抽取 时间关系 序列标注 图卷积 双向长短期记忆网络(Bi-LSTM)
在线阅读 下载PDF
基于图注意力网络的因果关系抽取 被引量:24
2
作者 许晶航 左万利 +1 位作者 梁世宁 王英 《计算机研究与发展》 EI CSCD 北大核心 2020年第1期159-174,共16页
因果关系作为一种重要的关系类型在关系推理等许多领域中起着至关重要的作用,因此对因果关系进行抽取是文本挖掘中的一项基本任务.与传统文本分类方法或关系抽取不同,采用序列标注的方法可以抽取文本中的因果实体并确定因果关系方向,不... 因果关系作为一种重要的关系类型在关系推理等许多领域中起着至关重要的作用,因此对因果关系进行抽取是文本挖掘中的一项基本任务.与传统文本分类方法或关系抽取不同,采用序列标注的方法可以抽取文本中的因果实体并确定因果关系方向,不需要依赖特征工程或因果背景知识.主要贡献有:1)拓展句法依存树到句法依存图,将图注意力网络应用到自然语言处理中,引入了基于句法依存图的图注意力网络的概念;2)提出Bi-LSTM+CRF+S-GAT因果关系抽取模型,根据输入的词向量生成句子中每个词的因果标签;3)对SemEval数据集进行修正与拓展,针对其存在的缺陷制定规则重新标注实验数据.在拓展后的SemEval数据集上进行了大量的实验,结果表明:该模型在预测准确率上比现有最优模型Bi-LSTM+CRF+self-ATT提高了0.064. 展开更多
关键词 因果关系抽取 图注意力网络 序列标注 句法依存图 双向长短期记忆网络
在线阅读 下载PDF
基于BERT-GCN的因果关系抽取 被引量:6
3
作者 李岳泽 左祥麟 +3 位作者 左万利 梁世宁 张一嘉 朱媛 《吉林大学学报(理学版)》 CAS 北大核心 2023年第2期325-330,共6页
针对自然语言处理中传统因果关系抽取主要用基于模式匹配的方法或机器学习算法进行抽取,结果准确率较低,且只能抽取带有因果提示词的显性因果关系问题,提出一种使用大规模的预训练模型结合图卷积神经网络的算法BERT-GCN.首先,使用BERT(b... 针对自然语言处理中传统因果关系抽取主要用基于模式匹配的方法或机器学习算法进行抽取,结果准确率较低,且只能抽取带有因果提示词的显性因果关系问题,提出一种使用大规模的预训练模型结合图卷积神经网络的算法BERT-GCN.首先,使用BERT(bidirectional encoder representation from transformers)对语料进行编码,生成词向量;然后,将生成的词向量放入图卷积神经网络中进行训练;最后,放入Softmax层中完成对因果关系的抽取.实验结果表明,该模型在数据集SEDR-CE上获得了较好的结果,且针对隐式的因果关系效果也较好. 展开更多
关键词 自然语言处理 因果关系抽取 图卷积神经网络 BERT模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部