期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
超参数自适应的MOEA/D-DE算法在翼型气动隐身优化中的应用 被引量:2
1
作者 王培君 夏露 +1 位作者 栾伟达 陈会强 《航空工程进展》 CSCD 2023年第3期50-60,共11页
MOEA/D-DE算法易于实现,被广泛应用于处理多目标优化问题,但其超参数对算法性能影响较大。基于MOEA/D-DE算法框架,利用Sobol全局灵敏度分析方法对差分进化算子中的交叉控制参数进行改进,使用莱维飞行机制控制比例因子,使算法中的超参数... MOEA/D-DE算法易于实现,被广泛应用于处理多目标优化问题,但其超参数对算法性能影响较大。基于MOEA/D-DE算法框架,利用Sobol全局灵敏度分析方法对差分进化算子中的交叉控制参数进行改进,使用莱维飞行机制控制比例因子,使算法中的超参数拥有自适应能力,得到超参数自适应的MOEA/D-DE算法——MOEA/D-DEAH算法;对MOEA/D-DEAH算法、不同超参数设置的MOEA/D-DE算法和NSGAⅡ算法进行函数测试和翼型气动隐身优化算例对比。结果表明:MOEA/D-DEAH算法性能良好,具有较强的鲁棒性,气动隐身优化效果也比其他算法更好。 展开更多
关键词 多目标优化算法 基于分解的多目标优化算法(MOEA/D) 超参数 灵敏度分析 气动隐身优化 差分进化算子
在线阅读 下载PDF
基于并行交换的增强粒子群优化算法在气动优化中的应用 被引量:1
2
作者 王培君 夏露 +1 位作者 周文硕 栾伟达 《西北工业大学学报》 EI CAS CSCD 北大核心 2022年第3期493-503,共11页
粒子群优化(PSO)算法易于实现,对优化问题可以获得质量较高的解,被广泛应用在如气动优化这种非线性高难度问题中,但是面对多峰问题容易陷入局部最优,存在鲁棒性较差的问题,为了提高PSO的鲁棒性,提出了基于并行交换的增强粒子群优化算法(... 粒子群优化(PSO)算法易于实现,对优化问题可以获得质量较高的解,被广泛应用在如气动优化这种非线性高难度问题中,但是面对多峰问题容易陷入局部最优,存在鲁棒性较差的问题,为了提高PSO的鲁棒性,提出了基于并行交换的增强粒子群优化算法(EPSOBPE)。该算法通过布谷鸟搜索算法(CSA)和PSO种群并行进化,分层交换操作和增强学习策略来增强算法寻优能力与鲁棒性。该算法兼具了CSA的全局搜索能力和PSO的局部能力,使得新算法具有极强的鲁棒性。函数测试表明,新算法相较于其他智能优化算法有更强的鲁棒性,对不同问题的适应能力更强。将EPSOBPE算法应用到RAE2822翼型和M6机翼的气动优化设计中,相较于其他算法可以得到更好的效果,从而表明新算法有鲁棒性,同时兼具了更好的寻优能力。 展开更多
关键词 粒子群优化算法 布谷鸟搜索算法 气动优化设计 全局优化
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部