期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
针对SAM下游模型脆弱模块的对抗迁移攻击
1
作者 丁熠 林能健 +2 位作者 蒋昀陶 钟宇浩 曹明生 《计算机研究与发展》 北大核心 2025年第10期2455-2467,共13页
SAM(segment anything model)作为一种通用的视觉基础模型,已被广泛应用于多种图像分割任务,但其在对抗性攻击面前表现出脆弱性.提出一种针对SAM下游模型脆弱模块的对抗迁移攻击方法FSGR(fragile section gradient robustness).该方法... SAM(segment anything model)作为一种通用的视觉基础模型,已被广泛应用于多种图像分割任务,但其在对抗性攻击面前表现出脆弱性.提出一种针对SAM下游模型脆弱模块的对抗迁移攻击方法FSGR(fragile section gradient robustness).该方法在无需知晓下游微调细节的前提下,可有效生成对抗样本,实现对SAM下游模型的攻击.该方法运用“脆弱层精准定位+局部强化迁移”策略,通过特征相似度筛选出跨任务共享且最易被激活的模块,针对性地强化攻击效果;同时,引入梯度稳健损失以消除目标模型与下游任务模型间的梯度差异. FSGR方法融合了脆弱层攻击与梯度稳健损失机制,在多个数据集上均实现了相对性能的提升.实验结果表明,FSGR在多种微调模型(如医学分割、阴影分割和伪装分割)的迁移攻击中显著降低了模型性能,证明了其正确性和实用性.与基线方法相比,FSGR不仅在攻击成功率上表现出色,还通过结合脆弱层攻击和梯度稳健损失,实现了相对性能的提升. 展开更多
关键词 图像分割 对抗攻击 迁移攻击 特征相似度 模型鲁棒性
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部