The spatial distributions of the electron density and the mean electron energy of argon radio frequency (rf) glow discharge plasma in a plasma-enhanced chemical vapour deposition (PECVD) system have been investiga...The spatial distributions of the electron density and the mean electron energy of argon radio frequency (rf) glow discharge plasma in a plasma-enhanced chemical vapour deposition (PECVD) system have been investigated using an established movable Langmuir probe. The results indicate that in the axial direction the electron density tends to peak at midway between the two electrodes while the axial variation trend of mean electron energy is different from that of the electron density, the mean electron energy is high near the electrodes. And the mean electron energy near the cathode is much higher than that near the anode. This article focuses on the radial distribution of electron density and mean electron energy. A proposed theoretical model distribution agrees well with the experimental one: the electron density and the mean electron energy both increase from the centre of the glow to the edge of electrodes. This is useful for better understanding the discharge mechanism and searching for a better deposition condition to improve thin film quality.展开更多
For a better understanding of the deposition mechanism of thin films in SiCl4 source gas, we have measured the spatial distributions of SiCln (n=0-2) radicals in SICl4 radio frequency glow discharge plasma utilizing...For a better understanding of the deposition mechanism of thin films in SiCl4 source gas, we have measured the spatial distributions of SiCln (n=0-2) radicals in SICl4 radio frequency glow discharge plasma utilizing a mass spectrometer equipped with a movable gas sampling apparatus. The experimental results demonstrate that the relative densities of SiCln (n=0-2) radicals have peak values at the position of 10 mm above the powered electrode along the axial direction; the relative densities of the Si and SiCIn (n=1, 2) radicals have peak values at the positions of 27mm and 7 mm away from the axis along the radial direction, respectively. Generally speaking, in the whole SICl4 plasma bulk region, the relative density of Si is one order of magnitude higher than that of SICl, and the relative density of SiCl is several times higher than that of SICl2. This reveals that Si and SiCl may be the primary growth precursors in forming thin films.展开更多
Nano-crystalline silicon(nc-Si)films embedded in SiO2 exhibited strong visible light luminescence at room temperature.The energies of photoluminescence peak were found to be more than 1.9eV and the peaks shifted to hi...Nano-crystalline silicon(nc-Si)films embedded in SiO2 exhibited strong visible light luminescence at room temperature.The energies of photoluminescence peak were found to be more than 1.9eV and the peaks shifted to higher energies when nano-Si films were post-oxidized.The photoluminescence intensity depended significantly on the size of the grains and the characteristics of the oxidized surface.Microcrystalline silicon grains of 2-3nm average size and radiation recombination centers located on the nanoscale silicon grain surfaces and located in the Si oxide layers are considered to be the source of the visible luminescence.展开更多
Hydrogenated nanocrystalline silicon thin films were fabricated from Sill4 with H2 dilution at a low substrate temperature of 200℃ by the conventional plasma enhanced chemical vapor deposition technique. A high depos...Hydrogenated nanocrystalline silicon thin films were fabricated from Sill4 with H2 dilution at a low substrate temperature of 200℃ by the conventional plasma enhanced chemical vapor deposition technique. A high deposition rate over 0.75 nm/s can be achieved. Raman scattering spectral measurements revealed that the crystalline fraction and grain size increased with the increase in hydrogen dilution ratio. Fourier transform infrared spectrum measurements showed that the hydrogen content decreased and the Si-H bonding configuration changed mainly from Sill to Sill2 with the increase in hydrogen dilution ratio. This suggested that the hydrogen dilution played an important role in the low-temperature growth of nanocrystalline silicon thin film. The growth mechanism is discussed in terms of a surface diffusion model and hydrogen etching effects.展开更多
Radicals produced by the plasma enhanced chemistry vapour deposition technique in SiCl4 plasma are identified by mass spectrometry using our newly proposed straight-line fit method. Since flow rate is one of the most ...Radicals produced by the plasma enhanced chemistry vapour deposition technique in SiCl4 plasma are identified by mass spectrometry using our newly proposed straight-line fit method. Since flow rate is one of the most important parameters in depositing thin films, we present the effects of SiCl4 flow rate variation on SiCln (n 〈 3) densities. The experimental results demonstrate that Si and SiCln (n = 1, 2) densities decrease with increasing SiCl4 flow rate. After reaching the minimum values at a flow rate of 17 and 13sccm, respectively, Si and SiCln (n = 1, 2) densities slightly increase with further increase of flow rate to 20.5sccm. These results could be interpreted to which the depletion fraction of SiCl4 decreases and the residence time of SiCl4 molecule becomes shorter, with the increasing SICl4 flow rate. In order to obtain high-quality poly-Si films with high growth rate, it is better to use smaller flow rate of SICl4 source gas for depositing films.展开更多
文摘The spatial distributions of the electron density and the mean electron energy of argon radio frequency (rf) glow discharge plasma in a plasma-enhanced chemical vapour deposition (PECVD) system have been investigated using an established movable Langmuir probe. The results indicate that in the axial direction the electron density tends to peak at midway between the two electrodes while the axial variation trend of mean electron energy is different from that of the electron density, the mean electron energy is high near the electrodes. And the mean electron energy near the cathode is much higher than that near the anode. This article focuses on the radial distribution of electron density and mean electron energy. A proposed theoretical model distribution agrees well with the experimental one: the electron density and the mean electron energy both increase from the centre of the glow to the edge of electrodes. This is useful for better understanding the discharge mechanism and searching for a better deposition condition to improve thin film quality.
文摘For a better understanding of the deposition mechanism of thin films in SiCl4 source gas, we have measured the spatial distributions of SiCln (n=0-2) radicals in SICl4 radio frequency glow discharge plasma utilizing a mass spectrometer equipped with a movable gas sampling apparatus. The experimental results demonstrate that the relative densities of SiCln (n=0-2) radicals have peak values at the position of 10 mm above the powered electrode along the axial direction; the relative densities of the Si and SiCIn (n=1, 2) radicals have peak values at the positions of 27mm and 7 mm away from the axis along the radial direction, respectively. Generally speaking, in the whole SICl4 plasma bulk region, the relative density of Si is one order of magnitude higher than that of SICl, and the relative density of SiCl is several times higher than that of SICl2. This reveals that Si and SiCl may be the primary growth precursors in forming thin films.
基金the National Natural Science Foundation of China under Grant No.19475027Natural Science Foundation of China under Grant No.950822.
文摘Nano-crystalline silicon(nc-Si)films embedded in SiO2 exhibited strong visible light luminescence at room temperature.The energies of photoluminescence peak were found to be more than 1.9eV and the peaks shifted to higher energies when nano-Si films were post-oxidized.The photoluminescence intensity depended significantly on the size of the grains and the characteristics of the oxidized surface.Microcrystalline silicon grains of 2-3nm average size and radiation recombination centers located on the nanoscale silicon grain surfaces and located in the Si oxide layers are considered to be the source of the visible luminescence.
基金supported by the Major State Basic Research and Development Program of China,Ministry of Science and Technology of China (No.G2000028208)
文摘Hydrogenated nanocrystalline silicon thin films were fabricated from Sill4 with H2 dilution at a low substrate temperature of 200℃ by the conventional plasma enhanced chemical vapor deposition technique. A high deposition rate over 0.75 nm/s can be achieved. Raman scattering spectral measurements revealed that the crystalline fraction and grain size increased with the increase in hydrogen dilution ratio. Fourier transform infrared spectrum measurements showed that the hydrogen content decreased and the Si-H bonding configuration changed mainly from Sill to Sill2 with the increase in hydrogen dilution ratio. This suggested that the hydrogen dilution played an important role in the low-temperature growth of nanocrystalline silicon thin film. The growth mechanism is discussed in terms of a surface diffusion model and hydrogen etching effects.
文摘Radicals produced by the plasma enhanced chemistry vapour deposition technique in SiCl4 plasma are identified by mass spectrometry using our newly proposed straight-line fit method. Since flow rate is one of the most important parameters in depositing thin films, we present the effects of SiCl4 flow rate variation on SiCln (n 〈 3) densities. The experimental results demonstrate that Si and SiCln (n = 1, 2) densities decrease with increasing SiCl4 flow rate. After reaching the minimum values at a flow rate of 17 and 13sccm, respectively, Si and SiCln (n = 1, 2) densities slightly increase with further increase of flow rate to 20.5sccm. These results could be interpreted to which the depletion fraction of SiCl4 decreases and the residence time of SiCl4 molecule becomes shorter, with the increasing SICl4 flow rate. In order to obtain high-quality poly-Si films with high growth rate, it is better to use smaller flow rate of SICl4 source gas for depositing films.