以PVDF为碳源,采用溶胶凝胶法制备Li1.2Mn0.54Ni0.13Co0.13O2/C正极复合材料.利用X-射线衍射(XRD)、同步热分析、扫描电子显微镜(SEM)表征合成材料的结构,利用充放电测试、循环伏安及交流阻抗测试系统地研究了碳包覆对材料电化学性能的...以PVDF为碳源,采用溶胶凝胶法制备Li1.2Mn0.54Ni0.13Co0.13O2/C正极复合材料.利用X-射线衍射(XRD)、同步热分析、扫描电子显微镜(SEM)表征合成材料的结构,利用充放电测试、循环伏安及交流阻抗测试系统地研究了碳包覆对材料电化学性能的影响.研究表明,合成的材料具有a-Na Fe O2层状结构且碳均匀包覆在Li1.2Mn0.54Ni0.13Co0.13O2颗粒表面.相比于Li1.2Mn0.54Ni0.13Co0.13O2,Li1.2Mn0.54Ni0.13Co0.13O2/C表现出更好的倍率性能和循环稳定性.电化学性能测试表明,碳表面修饰层增强了活性材料颗粒之间的电导性能,有效缓解电解液中HF对活性材料的腐蚀,降低电荷跃迁电阻(Rct),从而有效提高了材料的电化学性能.展开更多
ZnO and Mn-doped ZnO polycrystalline films are prepared by plasma enhanced chemical vapour deposition at low temperature (220℃), and room-temperature photoluminescence of the films is systematically investigated. A...ZnO and Mn-doped ZnO polycrystalline films are prepared by plasma enhanced chemical vapour deposition at low temperature (220℃), and room-temperature photoluminescence of the films is systematically investigated. Analysis from x-ray diffraction reveals that a11 the prepared films exhibit the wurtzite structure of ZnO, and Mndoping does not induce the second phase in the films. X-ray photoelectron spectroscopy confirms the existence of Mn^2+ ions in the films rather than metalic Mn or Mn^4+ ions. The emission efficiency of the ZnO film is found to be dependent strongly on the post-treatment and to degrade with increasing temperature either in air or in nitrogen ambient. However, the enhancement of near band edge (NBE) emission is observed after hydrogenation in ammonia plasma, companied with more defect-related emission. Furthermore, the position of NBE shifts towards to high-energy legion with increasing Mn-doped concentration due to Mn incorporation into ZnO lattice.展开更多
Room-temperature ferromagnetic Mn-doped ZnO films are grown on Si (001) substrates by plasma enhanced chemical vapour deposition (PECVD). X-ray diffraction measurements reveal that the Znl-xMn.O films have the sin...Room-temperature ferromagnetic Mn-doped ZnO films are grown on Si (001) substrates by plasma enhanced chemical vapour deposition (PECVD). X-ray diffraction measurements reveal that the Znl-xMn.O films have the single-phase wurtzite structure. X-ray photoelectron spectroscopy indicates the existence of Mn^2+ ions in Mndoped ZnO films. Furthermore, the decreasing additional Raman peak with increasing Mn-doping is considered to relate to the substitution of Mn ions for the Zn ions in ZnO lattice. Superconducting quantum interference device (SQUID) measurements demonstrate that Mn-doped ZnO films have ferromagnetic behaviour at room temperature.展开更多
Using first-principles calculations within the generalized gradient approximation (GGA) +U framework, we inves- tigate the effect of C doping on the structural and electronic properties of LiFePO4. The calculated f...Using first-principles calculations within the generalized gradient approximation (GGA) +U framework, we inves- tigate the effect of C doping on the structural and electronic properties of LiFePO4. The calculated formation energies indicate that C doped at O sites is energetically favoured, and that C dopants prefer to occupy 03 sites. The band gap of the C doped material is much narrow than that of the undoped one, indicating better electro- conductive properties. To maintain charge balance, the valence of the Fe nearest to C appears as Fe3+, and it will be helpful to the hopping of electrons.展开更多
This paper reports that polycrystalline Si0.956Mn0.044:B films have been prepared by cosputtering deposition followed by rapid thermal annealing for crystallization. The polycrystalline thin films were treated by hyd...This paper reports that polycrystalline Si0.956Mn0.044:B films have been prepared by cosputtering deposition followed by rapid thermal annealing for crystallization. The polycrystalline thin films were treated by hydrogen plasma excited with approach of radio-frequency plasma enhanced chemical vapour deposition for different time of 10 minutes, 15 minutes and 40 minutes. After hydrogenation, the structural properties of the films do not show any change, while both the saturation magnetization and the hole concentration in the films increase at first, then decrease with the increase of hydrogenation time. The obvious correlation between the magnetic properties and the transport properties of the polycrystalline Si0.956Mn0.044:B films suggests that a mechanism of hole-mediated ferromagnetism is believed to exist in Si-based diluted magnetic semiconductors.展开更多
La0.7Ca0.3MnO3:xZn0.95Co0.05O (x=0.0,0.05, 0.1, 0.15mol) composites are prepared by a sol-gel process. X- ray diffraction and energy diffraction spectroscopy reveal that there is no evidence of a reaction between t...La0.7Ca0.3MnO3:xZn0.95Co0.05O (x=0.0,0.05, 0.1, 0.15mol) composites are prepared by a sol-gel process. X- ray diffraction and energy diffraction spectroscopy reveal that there is no evidence of a reaction between the La0.7 Ca0.3 MnO3 (LCMO) and Zn0.95Co0.05 O (ZCO). Magnetization M, Curie temperature Tc and metal-insulator transition temperatures Tp are observed to decrease with increasing ZCO content. Compared with x = 0.0, a great enhancement in the magnetoresistance (MR) is observed at around Tc for x = 0.05, 0.10, 0.15. Based on the tunneling MR and percolation models, this great change of MR is well explained.展开更多
文摘以PVDF为碳源,采用溶胶凝胶法制备Li1.2Mn0.54Ni0.13Co0.13O2/C正极复合材料.利用X-射线衍射(XRD)、同步热分析、扫描电子显微镜(SEM)表征合成材料的结构,利用充放电测试、循环伏安及交流阻抗测试系统地研究了碳包覆对材料电化学性能的影响.研究表明,合成的材料具有a-Na Fe O2层状结构且碳均匀包覆在Li1.2Mn0.54Ni0.13Co0.13O2颗粒表面.相比于Li1.2Mn0.54Ni0.13Co0.13O2,Li1.2Mn0.54Ni0.13Co0.13O2/C表现出更好的倍率性能和循环稳定性.电化学性能测试表明,碳表面修饰层增强了活性材料颗粒之间的电导性能,有效缓解电解液中HF对活性材料的腐蚀,降低电荷跃迁电阻(Rct),从而有效提高了材料的电化学性能.
基金Supported by the National Key Basic Research Programme of China under Grant No 2005CB623605, and the National Natural Science Foundation of China under Grant Nos 10374044 and 60676055.
文摘ZnO and Mn-doped ZnO polycrystalline films are prepared by plasma enhanced chemical vapour deposition at low temperature (220℃), and room-temperature photoluminescence of the films is systematically investigated. Analysis from x-ray diffraction reveals that a11 the prepared films exhibit the wurtzite structure of ZnO, and Mndoping does not induce the second phase in the films. X-ray photoelectron spectroscopy confirms the existence of Mn^2+ ions in the films rather than metalic Mn or Mn^4+ ions. The emission efficiency of the ZnO film is found to be dependent strongly on the post-treatment and to degrade with increasing temperature either in air or in nitrogen ambient. However, the enhancement of near band edge (NBE) emission is observed after hydrogenation in ammonia plasma, companied with more defect-related emission. Furthermore, the position of NBE shifts towards to high-energy legion with increasing Mn-doped concentration due to Mn incorporation into ZnO lattice.
基金Supported by the National Key Basic Research Programme of China, and National Natural Science Foundation of China under Grant No 10374044.
文摘Room-temperature ferromagnetic Mn-doped ZnO films are grown on Si (001) substrates by plasma enhanced chemical vapour deposition (PECVD). X-ray diffraction measurements reveal that the Znl-xMn.O films have the single-phase wurtzite structure. X-ray photoelectron spectroscopy indicates the existence of Mn^2+ ions in Mndoped ZnO films. Furthermore, the decreasing additional Raman peak with increasing Mn-doping is considered to relate to the substitution of Mn ions for the Zn ions in ZnO lattice. Superconducting quantum interference device (SQUID) measurements demonstrate that Mn-doped ZnO films have ferromagnetic behaviour at room temperature.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11074039 and 11004032)the National Basic Research Program of China (Grant No. 2011CBA00200)
文摘Using first-principles calculations within the generalized gradient approximation (GGA) +U framework, we inves- tigate the effect of C doping on the structural and electronic properties of LiFePO4. The calculated formation energies indicate that C doped at O sites is energetically favoured, and that C dopants prefer to occupy 03 sites. The band gap of the C doped material is much narrow than that of the undoped one, indicating better electro- conductive properties. To maintain charge balance, the valence of the Fe nearest to C appears as Fe3+, and it will be helpful to the hopping of electrons.
基金supported by the National Key Program for Fundamental Research Development Plan of China (973 project)
文摘This paper reports that polycrystalline Si0.956Mn0.044:B films have been prepared by cosputtering deposition followed by rapid thermal annealing for crystallization. The polycrystalline thin films were treated by hydrogen plasma excited with approach of radio-frequency plasma enhanced chemical vapour deposition for different time of 10 minutes, 15 minutes and 40 minutes. After hydrogenation, the structural properties of the films do not show any change, while both the saturation magnetization and the hole concentration in the films increase at first, then decrease with the increase of hydrogenation time. The obvious correlation between the magnetic properties and the transport properties of the polycrystalline Si0.956Mn0.044:B films suggests that a mechanism of hole-mediated ferromagnetism is believed to exist in Si-based diluted magnetic semiconductors.
文摘La0.7Ca0.3MnO3:xZn0.95Co0.05O (x=0.0,0.05, 0.1, 0.15mol) composites are prepared by a sol-gel process. X- ray diffraction and energy diffraction spectroscopy reveal that there is no evidence of a reaction between the La0.7 Ca0.3 MnO3 (LCMO) and Zn0.95Co0.05 O (ZCO). Magnetization M, Curie temperature Tc and metal-insulator transition temperatures Tp are observed to decrease with increasing ZCO content. Compared with x = 0.0, a great enhancement in the magnetoresistance (MR) is observed at around Tc for x = 0.05, 0.10, 0.15. Based on the tunneling MR and percolation models, this great change of MR is well explained.