This paper presents the first comprehensive simulation study of p-11B fusion reactions in a spherical torus.We developed relevant program modules for fusion reactions based on energetic particle simulation frameworks ...This paper presents the first comprehensive simulation study of p-11B fusion reactions in a spherical torus.We developed relevant program modules for fusion reactions based on energetic particle simulation frameworks and analyzed the two main fusion channels:thermal and beam-thermal.Using EHL-2 design parameters with n_(boron)=007n_(ion)and a hydrogen beam at 200 keV and 1 MW,our simulation indicates that p-11B reactions produce approximately 1.5×10^(15)αparticles per second(~0.7 kW)from the thermal channel,and5.3×10^(14)(~0.25 kW)from the beam-thermal channel.We conducted parameter scans to establish a solid physics foundation for the high ion temperature conditions(T_(i)>26ke V)designed for EHL-2.This work also laid the groundwork for studying various operation modes to explore different reaction channels.The simulation results suggest that the conditions in EHL-2 could be sufficient for investigating p-11B thermonuclear reactions.In addition,we found that EHL-2 offered good confinement for energetic particles,allowing us to research the interactions between these ions and plasmas.This research enhances our understanding of burning plasma physics.展开更多
The neutral beam injection is widely adopted in tokamaks as a key heating tool,playing a crucial role in generating burning plasmas.However,the loss of beam ions can damage the first wall and reduce the heating effici...The neutral beam injection is widely adopted in tokamaks as a key heating tool,playing a crucial role in generating burning plasmas.However,the loss of beam ions can damage the first wall and reduce the heating efficiency,resulting in failure to maintain steady-state conditions.In this work,the effect of neutral particles in the edge on fast ions generated by NBI in the Experimental Advanced Superconducting Tokamak(EAST)device is studied using the particle tracer code(PTC).The poloidal distribution of neutral particles is calculated by edge plasma simulation code SOLPS-ITER.In this simulation,four beam lines in EAST are considered:co-current tangential(co-tang),co-current perpendicular(co-perp),counter-current tangential(ctr-tang)and counter-current perpendicular(ctr-perp).It is shown that,in the absence of neutral particles,the loss fraction of ctr-injection is considerably higher than that of the co-injection.When considering the neutral particles,it is found that the ctr-perp injection demonstrates a significant variation in particles loss fraction(ranging from 18.56%to 25.42%)compared to the other three injection configurations.In terms of the loss fraction induced by neutral particles,ctr-injection exceeds co-injection,and perpendicular configuration exceeds tangential configuration.Furthermore,the difference of charge exchange ratios of three different energy(full energy,half energy,one third energy)of the four injections can be attributed to variations in the poloidal trajectories associated with each of these injections.Moreover,approximately half of fast ions which undergo neutralization directly lose to the first wall while the rest re-enter the bulk plasma and re-ionize.Except for the ctr-tang injection,the reionization ions from the other three injections exhibit effective confinement.展开更多
Fusion born α particle confinement is one of the most important issues in burning plasmas,such as ITER and CFETR.However,it is extremely complex due to the nonequilibrium characteristics,and multiple temporal and spa...Fusion born α particle confinement is one of the most important issues in burning plasmas,such as ITER and CFETR.However,it is extremely complex due to the nonequilibrium characteristics,and multiple temporal and spatial scales coupling with background plasma.A numerical code using particle orbit tracing method(PTC)has been developed to study energetic particle confinement in tokamak plasmas.Both full orbit and drift orbit solvers are implemented to analyze the Larmor radius effects on α particle confinement.The elastic collisions between alpha particles and thermal plasma are calculated by a Monte Carlo method.A triangle mesh in poloidal section is generated for electromagnetic fields expression.Benchmark between PTC and ORBIT has been accomplished for verification.For CFETR burning plasmas,PTC code is used for α particle source and slowing down process calculation in 2D equilibrium.In future work,3D field like toroidal field ripples,Alfven and magnetohydrodynamics instabilities perturbation inducing α particle transport will be analyzed.展开更多
基金supported by ENN Group and ENN Energy Research Institute.
文摘This paper presents the first comprehensive simulation study of p-11B fusion reactions in a spherical torus.We developed relevant program modules for fusion reactions based on energetic particle simulation frameworks and analyzed the two main fusion channels:thermal and beam-thermal.Using EHL-2 design parameters with n_(boron)=007n_(ion)and a hydrogen beam at 200 keV and 1 MW,our simulation indicates that p-11B reactions produce approximately 1.5×10^(15)αparticles per second(~0.7 kW)from the thermal channel,and5.3×10^(14)(~0.25 kW)from the beam-thermal channel.We conducted parameter scans to establish a solid physics foundation for the high ion temperature conditions(T_(i)>26ke V)designed for EHL-2.This work also laid the groundwork for studying various operation modes to explore different reaction channels.The simulation results suggest that the conditions in EHL-2 could be sufficient for investigating p-11B thermonuclear reactions.In addition,we found that EHL-2 offered good confinement for energetic particles,allowing us to research the interactions between these ions and plasmas.This research enhances our understanding of burning plasma physics.
基金supported by the National Key R&D Program of China(No.2022YFE03090000)National Natural Science Foundation of China(No.11975068).
文摘The neutral beam injection is widely adopted in tokamaks as a key heating tool,playing a crucial role in generating burning plasmas.However,the loss of beam ions can damage the first wall and reduce the heating efficiency,resulting in failure to maintain steady-state conditions.In this work,the effect of neutral particles in the edge on fast ions generated by NBI in the Experimental Advanced Superconducting Tokamak(EAST)device is studied using the particle tracer code(PTC).The poloidal distribution of neutral particles is calculated by edge plasma simulation code SOLPS-ITER.In this simulation,four beam lines in EAST are considered:co-current tangential(co-tang),co-current perpendicular(co-perp),counter-current tangential(ctr-tang)and counter-current perpendicular(ctr-perp).It is shown that,in the absence of neutral particles,the loss fraction of ctr-injection is considerably higher than that of the co-injection.When considering the neutral particles,it is found that the ctr-perp injection demonstrates a significant variation in particles loss fraction(ranging from 18.56%to 25.42%)compared to the other three injection configurations.In terms of the loss fraction induced by neutral particles,ctr-injection exceeds co-injection,and perpendicular configuration exceeds tangential configuration.Furthermore,the difference of charge exchange ratios of three different energy(full energy,half energy,one third energy)of the four injections can be attributed to variations in the poloidal trajectories associated with each of these injections.Moreover,approximately half of fast ions which undergo neutralization directly lose to the first wall while the rest re-enter the bulk plasma and re-ionize.Except for the ctr-tang injection,the reionization ions from the other three injections exhibit effective confinement.
基金Supported by the National Natural Science Foundation of China (Grant Nos.11975068 and 11925501)the National Key Research and Development Program of China (Grant No.2017YFE0300501)。
文摘Fusion born α particle confinement is one of the most important issues in burning plasmas,such as ITER and CFETR.However,it is extremely complex due to the nonequilibrium characteristics,and multiple temporal and spatial scales coupling with background plasma.A numerical code using particle orbit tracing method(PTC)has been developed to study energetic particle confinement in tokamak plasmas.Both full orbit and drift orbit solvers are implemented to analyze the Larmor radius effects on α particle confinement.The elastic collisions between alpha particles and thermal plasma are calculated by a Monte Carlo method.A triangle mesh in poloidal section is generated for electromagnetic fields expression.Benchmark between PTC and ORBIT has been accomplished for verification.For CFETR burning plasmas,PTC code is used for α particle source and slowing down process calculation in 2D equilibrium.In future work,3D field like toroidal field ripples,Alfven and magnetohydrodynamics instabilities perturbation inducing α particle transport will be analyzed.