期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于Wigner函数的一些量子熵的定义 被引量:2
1
作者 林冰生 衡太骅 《大学物理》 2019年第3期1-3,13,共4页
本文分别介绍了冯诺依曼熵、线性熵、Rényi熵和Tsallis熵等几种量子熵,以及它们在相空间中基于Wigner函数的几种不同的定义.通过理论推导和具体的数值计算,证明了文献中利用Wigner函数的绝对值来定义相空间量子熵是不合适的,而本... 本文分别介绍了冯诺依曼熵、线性熵、Rényi熵和Tsallis熵等几种量子熵,以及它们在相空间中基于Wigner函数的几种不同的定义.通过理论推导和具体的数值计算,证明了文献中利用Wigner函数的绝对值来定义相空间量子熵是不合适的,而本文给出的利用Wigner函数的Moyal星乘积定义的量子熵与通常利用密度矩阵定义的量子熵结果是相一致的. 展开更多
关键词 WIGNER函数 冯诺依曼熵 TSALLIS熵 Rényi熵 线性熵
在线阅读 下载PDF
A Relation of the Noncommutative Parameters in Generalized Noncommutative Phase Space
2
作者 林冰生 衡太骅 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第11期22-24,共3页
We introduce the deformed boson operators which satisfy a deformed boson algebra in some special types of generalized noncommutative phase space. Based on the deformed boson algebra, we construct coherent state repres... We introduce the deformed boson operators which satisfy a deformed boson algebra in some special types of generalized noncommutative phase space. Based on the deformed boson algebra, we construct coherent state representations. We calculate the variances of the coordinate operators on the coherent states and investigate the corresponding Heisenberg uncertainty relations. It is found that there are some restriction relations of the noncommutative parameters in these special types of noncommutative phase space. 展开更多
关键词 of on is in HAVE A Relation of the Noncommutative Parameters in Generalized Noncommutative Phase Space
在线阅读 下载PDF
A diagrammatic categorification of the fermion algebra
3
作者 林冰生 王志玺 +1 位作者 吴可 杨紫峰 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期61-66,共6页
In this paper, we study the diagrammatic categorification of the fermion algebra. We construct a graphical category corresponding to the one-dimensional (1D) fermion algebra, and we investigate the properties of thi... In this paper, we study the diagrammatic categorification of the fermion algebra. We construct a graphical category corresponding to the one-dimensional (1D) fermion algebra, and we investigate the properties of this category. The categorical analogues of the Fock states are some kind of 1-morphisms in our category, and the dimension of the vector space of 2-morphisms is exactly the inner product of the corresponding Fock states. All the results in our categorical framework coincide exnetlv with those in normal quantum mechanics. 展开更多
关键词 CATEGORIFICATION fermion algebra
在线阅读 下载PDF
Wigner Functions for Non-Hamiltonian Systems on Noncommutative Space 被引量:7
4
作者 衡太骅 林冰生 井思聪 《Chinese Physics Letters》 SCIE CAS CSCD 2008年第10期3535-3538,共4页
We propose a modified form of Wigner functions for generic non-Hamiltonian systems on noncommutative space and prove that it satisfies the corresponding *-genvalue equation. In addition, as an example, we derive exac... We propose a modified form of Wigner functions for generic non-Hamiltonian systems on noncommutative space and prove that it satisfies the corresponding *-genvalue equation. In addition, as an example, we derive exact energy spectra and Wigner functions for a non-Hamiltonian toy model on the noncommutative space. 展开更多
关键词 the power-law exponents PRECIPITATION durative abrupt precipitation change
在线阅读 下载PDF
Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension 被引量:1
5
作者 LIN Bing-Sheng HENG Tai-Hua 《Chinese Physics Letters》 SCIE CAS CSCD 2011年第7期23-26,共4页
We use the invariant eigen-operator method to study the higher-dimensional harmonic oscillator in a type of generalized noncommutative phase space,and obtain the explicit expression of the energy spectra of the noncom... We use the invariant eigen-operator method to study the higher-dimensional harmonic oscillator in a type of generalized noncommutative phase space,and obtain the explicit expression of the energy spectra of the noncommutative harmonic oscillator in arbitrary dimension.It is found that the energy spectra of the higher-dimensional noncommutative harmonic oscillator are equal to the sum of the energy spectra of some 1D harmonic oscillators and some 2D noncommutative harmonic oscillators.We believe that the properties of the harmonic oscillator may reflect some essence of the noncommutative phase space. 展开更多
关键词 DIMENSION SPACE HARMONIC
在线阅读 下载PDF
A diagrammatic categorification of q-boson and q-fermion algebras
6
作者 Cai Li-qiang Lin Bing-Sheng Wu Ke 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期1-8,共8页
In this paper, we study the diagrammatic categorification of q-boson algebra and also q-fermion algebra. We construct a graphical category corresponding to q-boson algebra, q-Fock states correspond to some kind of 1-m... In this paper, we study the diagrammatic categorification of q-boson algebra and also q-fermion algebra. We construct a graphical category corresponding to q-boson algebra, q-Fock states correspond to some kind of 1-morphisms, and the graded dimension of the graded vector space of 2-morphisms is exactly the inner product of the corresponding q-Fock states. We also find that this graphical category can be used to categorify q-fermion algebra. 展开更多
关键词 CATEGORIFICATION q-boson algebra q-Fock state q-fermion algebra
在线阅读 下载PDF
Cluster algebra structure on the finite dimensional representations of affine quantum group U_q(_3)
7
作者 杨彦敏 马海涛 +1 位作者 林冰生 郑驻军 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第1期119-124,共6页
In this paper, we prove one case of conjecture given by Hemandez and Leclerc. We give a cluster algebra structuure on the Grothendieck ring of a full subcategory of the finite dimensional representations of affine qua... In this paper, we prove one case of conjecture given by Hemandez and Leclerc. We give a cluster algebra structuure on the Grothendieck ring of a full subcategory of the finite dimensional representations of affine quantum group Uq(A3). As a conclusion, for every exchange relation of cluster algebra, there exists an exact sequence of the full subcategory corresponding to it. 展开更多
关键词 affine quantum group cluster algebra monoidal categorification
在线阅读 下载PDF
Connes distance of 2D harmonic oscillators in quantum phase space
8
作者 Bing-Sheng Lin Tai-Hua Heng 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第11期170-179,共10页
We study the Connes distance of quantum states of two-dimensional(2D)harmonic oscillators in phase space.Using the Hilbert–Schmidt operatorial formulation,we construct a boson Fock space and a quantum Hilbert space,a... We study the Connes distance of quantum states of two-dimensional(2D)harmonic oscillators in phase space.Using the Hilbert–Schmidt operatorial formulation,we construct a boson Fock space and a quantum Hilbert space,and obtain the Dirac operator and a spectral triple corresponding to a four-dimensional(4D)quantum phase space.Based on the ball condition,we obtain some constraint relations about the optimal elements.We construct the corresponding optimal elements and then derive the Connes distance between two arbitrary Fock states of 2D quantum harmonic oscillators.We prove that these two-dimensional distances satisfy the Pythagoras theorem.These results are significant for the study of geometric structures of noncommutative spaces,and it can also help us to study the physical properties of quantum systems in some kinds of noncommutative spaces. 展开更多
关键词 Connes distance noncommutative geometry harmonic oscillator
在线阅读 下载PDF
Wigner Functions for the Bateman System on Noncommutative Phase Space
9
作者 衡太骅 林冰生 并思聪 《Chinese Physics Letters》 SCIE CAS CSCD 2010年第9期16-19,共4页
We study an important dissipation system, i.e. the Bateman model on noncommutative phase space. Using the method of deformation quantization, we calculate the Exp functions, and then derive the Wigner functions and th... We study an important dissipation system, i.e. the Bateman model on noncommutative phase space. Using the method of deformation quantization, we calculate the Exp functions, and then derive the Wigner functions and the corresponding energy spectra. 展开更多
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部