Aminoethyl methacrylate(AEMA) was grafted onto the polypropylene microporous membrane by photo-induced polymerization to immobilize dextran. XPS spectra confirmed the chemical change of the membrane surface after the ...Aminoethyl methacrylate(AEMA) was grafted onto the polypropylene microporous membrane by photo-induced polymerization to immobilize dextran. XPS spectra confirmed the chemical change of the membrane surface after the graft polymerization of AEMA and the immobilization of dextran. The water contact angle measurement indicated that the hydrophilicity of the membrane surface can be increased reparably by the dextran immobilization.展开更多
给出了时域非连续伽辽金(Discontinuous Galerkin Time Domain,DGTD)法的基本思想,从Maxwell方程出发得到弱解形式和矩阵方程,进一步给出了DGTD步进计算式.计算了空腔和填充谐振腔的谐振频率,并与解析结果相比较.算例表明在谐振腔计算中...给出了时域非连续伽辽金(Discontinuous Galerkin Time Domain,DGTD)法的基本思想,从Maxwell方程出发得到弱解形式和矩阵方程,进一步给出了DGTD步进计算式.计算了空腔和填充谐振腔的谐振频率,并与解析结果相比较.算例表明在谐振腔计算中DGTD可以达到很高的精度.展开更多
时域离散伽辽金法(Discontinuous Galerkin Time Domain,DGTD)同时具有时域有限元算法(Finite Element Time Domain,FETD)非结构网格剖分和时域有限差分算法(Finite Difference Time Domain,FDTD)显式迭代的优点,是一种非常有前途的电...时域离散伽辽金法(Discontinuous Galerkin Time Domain,DGTD)同时具有时域有限元算法(Finite Element Time Domain,FETD)非结构网格剖分和时域有限差分算法(Finite Difference Time Domain,FDTD)显式迭代的优点,是一种非常有前途的电磁计算方法,该文首先描述了基于矢量基函数的时域离散伽辽金法的基本原理。然后,给出了DGTD处理散射问题时平面波入射加入的具体实现方法。最后,给出了金属球、介质球和金属弹头宽带散射的算例,算例结果的比较表明了该文算法的正确性和有效性。该文的研究,为复杂目标雷达散射截面RCS的准确预估打下了坚实的基础。展开更多
文摘Aminoethyl methacrylate(AEMA) was grafted onto the polypropylene microporous membrane by photo-induced polymerization to immobilize dextran. XPS spectra confirmed the chemical change of the membrane surface after the graft polymerization of AEMA and the immobilization of dextran. The water contact angle measurement indicated that the hydrophilicity of the membrane surface can be increased reparably by the dextran immobilization.
文摘给出了时域非连续伽辽金(Discontinuous Galerkin Time Domain,DGTD)法的基本思想,从Maxwell方程出发得到弱解形式和矩阵方程,进一步给出了DGTD步进计算式.计算了空腔和填充谐振腔的谐振频率,并与解析结果相比较.算例表明在谐振腔计算中DGTD可以达到很高的精度.
文摘时域离散伽辽金法(Discontinuous Galerkin Time Domain,DGTD)同时具有时域有限元算法(Finite Element Time Domain,FETD)非结构网格剖分和时域有限差分算法(Finite Difference Time Domain,FDTD)显式迭代的优点,是一种非常有前途的电磁计算方法,该文首先描述了基于矢量基函数的时域离散伽辽金法的基本原理。然后,给出了DGTD处理散射问题时平面波入射加入的具体实现方法。最后,给出了金属球、介质球和金属弹头宽带散射的算例,算例结果的比较表明了该文算法的正确性和有效性。该文的研究,为复杂目标雷达散射截面RCS的准确预估打下了坚实的基础。