报道了发现于浙江省宁波市象山的1种浙江新记录植物——田葱Philydrum lanuginosum Banks et Sol.ex Gaertn.,田葱属Philydrum Banks et Sol.ex Gaertn.及田葱科Philydraceae均为浙江省分布新记录;并对该种的来源进行了考证,描述了形态...报道了发现于浙江省宁波市象山的1种浙江新记录植物——田葱Philydrum lanuginosum Banks et Sol.ex Gaertn.,田葱属Philydrum Banks et Sol.ex Gaertn.及田葱科Philydraceae均为浙江省分布新记录;并对该种的来源进行了考证,描述了形态特征、生境、伴生植物及用途。凭证标本藏于浙江农林大学植物标本馆(ZJFC)。展开更多
In this paper, we study the diagrammatic categorification of the fermion algebra. We construct a graphical category corresponding to the one-dimensional (1D) fermion algebra, and we investigate the properties of thi...In this paper, we study the diagrammatic categorification of the fermion algebra. We construct a graphical category corresponding to the one-dimensional (1D) fermion algebra, and we investigate the properties of this category. The categorical analogues of the Fock states are some kind of 1-morphisms in our category, and the dimension of the vector space of 2-morphisms is exactly the inner product of the corresponding Fock states. All the results in our categorical framework coincide exnetlv with those in normal quantum mechanics.展开更多
文摘报道了发现于浙江省宁波市象山的1种浙江新记录植物——田葱Philydrum lanuginosum Banks et Sol.ex Gaertn.,田葱属Philydrum Banks et Sol.ex Gaertn.及田葱科Philydraceae均为浙江省分布新记录;并对该种的来源进行了考证,描述了形态特征、生境、伴生植物及用途。凭证标本藏于浙江农林大学植物标本馆(ZJFC)。
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10975102,10871135,11031005,and 11075014)
文摘In this paper, we study the diagrammatic categorification of the fermion algebra. We construct a graphical category corresponding to the one-dimensional (1D) fermion algebra, and we investigate the properties of this category. The categorical analogues of the Fock states are some kind of 1-morphisms in our category, and the dimension of the vector space of 2-morphisms is exactly the inner product of the corresponding Fock states. All the results in our categorical framework coincide exnetlv with those in normal quantum mechanics.