期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
QTFD与DenseNet相结合的运动想象分类方法
被引量:
2
1
作者
金晶
杨益雕
+1 位作者
孙浩
王行愚
《信号处理》
CSCD
北大核心
2023年第8期1443-1454,共12页
运动想象脑机接口(Motor Imagery Brain Computer Interface,MI-BCI)技术近年来在医疗康复、娱乐等许多领域得到了广泛的运用。然而,如何处理非平稳的脑电信号(Electroencephalography,EEG),并从中提取可辨识的特征并分类仍然是主要难...
运动想象脑机接口(Motor Imagery Brain Computer Interface,MI-BCI)技术近年来在医疗康复、娱乐等许多领域得到了广泛的运用。然而,如何处理非平稳的脑电信号(Electroencephalography,EEG),并从中提取可辨识的特征并分类仍然是主要难点之一。针对这个问题,本研究提出了一种基于二次型时频分布(Quadratic timefrequency distributions,QTFD)和密接型网络(DenseNet)的新型MI-EEG分类模型。具体地,我们首先使用QTFD初步提取MI任务相关的脑电时频特征,并构造得到EEG片段的高分辨率时频表示。常用的线性时频分析方法往往会忽略部分非线性信息,难以准确地描述MI信号的能量分布。与线性时频分析方法相比,QTFD方法以二次型变换的形式将信号从时域投影到时频域,能更好地描述信号的能量分布,其对时间和频率的变化具有不变性,能提供较为稳定准确的时频特征。随后,本研究采用了轻量级网络模型DenseNet对时频表示的浅层和深层特征进行逐级提取并整合。DenseNet可训练参数量较少,适用于数据量较少的MI-BCI应用,它在每层网络之间都建立了直接的连接,每一层网络都可以访问之前所有网络的特征图,从而得到更具有区分性的特征表示。最后,本研究在BCI竞赛IV数据集上进行了实验验证,将提出的分类模型与各先进对比算法进行了比较。结果表明,我们所提出的方法在使用脑电通道数更少的情况下,获得了更好的分类性能。
展开更多
关键词
脑机接口
脑电信号
运动想象
神经网络
时频变换
在线阅读
下载PDF
职称材料
题名
QTFD与DenseNet相结合的运动想象分类方法
被引量:
2
1
作者
金晶
杨益雕
孙浩
王行愚
机构
华东理工大学能源化工过程智能制造教育部重点实验室
华东理工大学深圳研究院
出处
《信号处理》
CSCD
北大核心
2023年第8期1443-1454,共12页
基金
国家自然科学基金项目(62176090)
科技创新2030重点项目2022ZD0208900
+3 种基金
部分获得上海市科技重大专项2021SHZDZX项目资助
部分获得“111计划”B17017项目资助
国家地方科技发展引导基金项目(深圳市)(2021Szvup043)
江苏省科技计划2022年度专项资金项目BE2022064-1(重点研发计划、产业前瞻和关键核心技术)。
文摘
运动想象脑机接口(Motor Imagery Brain Computer Interface,MI-BCI)技术近年来在医疗康复、娱乐等许多领域得到了广泛的运用。然而,如何处理非平稳的脑电信号(Electroencephalography,EEG),并从中提取可辨识的特征并分类仍然是主要难点之一。针对这个问题,本研究提出了一种基于二次型时频分布(Quadratic timefrequency distributions,QTFD)和密接型网络(DenseNet)的新型MI-EEG分类模型。具体地,我们首先使用QTFD初步提取MI任务相关的脑电时频特征,并构造得到EEG片段的高分辨率时频表示。常用的线性时频分析方法往往会忽略部分非线性信息,难以准确地描述MI信号的能量分布。与线性时频分析方法相比,QTFD方法以二次型变换的形式将信号从时域投影到时频域,能更好地描述信号的能量分布,其对时间和频率的变化具有不变性,能提供较为稳定准确的时频特征。随后,本研究采用了轻量级网络模型DenseNet对时频表示的浅层和深层特征进行逐级提取并整合。DenseNet可训练参数量较少,适用于数据量较少的MI-BCI应用,它在每层网络之间都建立了直接的连接,每一层网络都可以访问之前所有网络的特征图,从而得到更具有区分性的特征表示。最后,本研究在BCI竞赛IV数据集上进行了实验验证,将提出的分类模型与各先进对比算法进行了比较。结果表明,我们所提出的方法在使用脑电通道数更少的情况下,获得了更好的分类性能。
关键词
脑机接口
脑电信号
运动想象
神经网络
时频变换
Keywords
brain-computer interface
electroencephalography
motor imagery
neural network
time-frequency transform
分类号
R318 [医药卫生—生物医学工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
QTFD与DenseNet相结合的运动想象分类方法
金晶
杨益雕
孙浩
王行愚
《信号处理》
CSCD
北大核心
2023
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部