期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
通信网络测试仪表中CAP软件模块的研究与实现 被引量:3
1
作者 尚楠 张治中 +1 位作者 杨抗 余银凤 《现代电子技术》 2007年第19期92-94,97,共4页
为了简单正确地将CAP协议运用于应用系统中,遵循基于ASN.1的CAP协议编码规范,采用面向对象的软件设计方法,开发研究出运用于通信测试仪表的CAP软件模块。从用户需求分析出发,介绍了软件的系统设计和实现方法,并在实践中得到应用。
关键词 通信网络测试仪 ASN.1 呼叫数据记录 CAP协议
在线阅读 下载PDF
Improving autoencoder-based unsupervised damage detection in uncontrolled structural health monitoring under noisy conditions 被引量:1
2
作者 Yang Kang Wang Linyuan +4 位作者 Gao Chao Chen Mozhi Tian Zhihui Zhou Dunzhi Liu Yang 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第6期91-100,共10页
Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enh... Structural health monitoring is widely utilized in outdoor environments,especially under harsh conditions,which can introduce noise into the monitoring system.Therefore,designing an effective denoising strategy to enhance the performance of guided wave damage detection in noisy environments is crucial.This paper introduces a local temporal principal component analysis(PCA)reconstruction approach for denoising guided waves prior to implementing unsupervised damage detection,achieved through novel autoencoder-based reconstruction.Experimental results demonstrate that the proposed denoising method significantly enhances damage detection performance when guided waves are contaminated by noise,with SNR values ranging from 10 to-5 dB.Following the implementation of the proposed denoising approach,the AUC score can elevate from 0.65 to 0.96 when dealing with guided waves corrputed by noise at a level of-5 dB.Additionally,the paper provides guidance on selecting the appropriate number of components used in the denoising PCA reconstruction,aiding in the optimization of the damage detection in noisy conditions. 展开更多
关键词 structural health monitoring guided waves principal component analysis deep learning DENOISING dynamic environmental condition
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部