旋转叶片是航空发动机的关键易损件,需要对其进行状态监测。叶端定时(Blade tip timing,BTT)是一种有效的旋转叶片非接触监测方法。然而,传统的叶端定时严重依赖键相信号,叶端定时信号存在严重的欠采样问题。对此,提出了一种基于叶片振...旋转叶片是航空发动机的关键易损件,需要对其进行状态监测。叶端定时(Blade tip timing,BTT)是一种有效的旋转叶片非接触监测方法。然而,传统的叶端定时严重依赖键相信号,叶端定时信号存在严重的欠采样问题。对此,提出了一种基于叶片振动差的正交匹配追踪(Orthogonal matching pursuit,OMP)方法来提取叶片固有频率。首先,使用叶端定时传感器计算叶片振动差。然后,构建叶片振动差的稀疏模型,在变转速情况下使用正交匹配追踪方法对叶片振动差信号进行分解,提取叶片振动振幅和固有频率。通过数值仿真验证了该方法的有效性和鲁棒性,并在叶端定时试验台上进行试验。结果表明,该方法可以准确识别叶片异步振动的振幅和固有频率。展开更多
叶端定时是航空发动机叶片叶端振动非接触测量的有效手段,但其采样模式决定了所采信号具有高度欠采样特征,需要进行抗混叠频谱分析从而提取转子叶片固有频率这一关键指标。利用了前向平滑策略的改进多重信号分类法(multiple sIgnal clas...叶端定时是航空发动机叶片叶端振动非接触测量的有效手段,但其采样模式决定了所采信号具有高度欠采样特征,需要进行抗混叠频谱分析从而提取转子叶片固有频率这一关键指标。利用了前向平滑策略的改进多重信号分类法(multiple sIgnal classification,MUSIC)能实现抗混叠但无法充分发挥平滑方法的优势。因此,提出适用于叶端定时信号处理的前后向平滑MUSIC法,通过建立传感器的对称布局条件,利用前后向平滑方法代替前向平滑方法,得到更准确的自相关矩阵估计,进而提高叶片固有频率估计性能,并通过仿真和试验验证了在样本数量、算法参数等相同的情况下,前后向平滑MUSIC法的混叠与噪声抑制能力得到了提升。展开更多
经典双稳态随机共振系统通过各种参数地调节可实现噪声、周期信号及非线性双稳态系统的最佳匹配从而实现随机共振,促使系统输出的微弱周期分量得到了一定的噪声能量而达到增强的效果,从而有效检测出微弱的周期分量,但噪声能量利用有限,...经典双稳态随机共振系统通过各种参数地调节可实现噪声、周期信号及非线性双稳态系统的最佳匹配从而实现随机共振,促使系统输出的微弱周期分量得到了一定的噪声能量而达到增强的效果,从而有效检测出微弱的周期分量,但噪声能量利用有限,系统响应中仍存在一定的噪声能量。二阶随机共振增强的系统模型,借助“双重积分”实现噪声的重复利用,将噪声进行二次利用,有效促进高频噪声能量进一步转移到低频区域,有效提高输出响应的信噪比。考虑到多尺度带限噪声对随机共振的影响,并基于随机共振特殊低通滤波器的数学本质,提出了以协同信噪比(collaborative signal to noise ratio,CSNR)为目标函数,基于Paul小波的自适应多尺度噪声调节二阶随机共振增强方法,充分利用了小波的多分辨时频分析能力,将输入信号和噪声划分到不同频带,实现了不同频带信号和噪声强度大小的控制,以进一步改善随机共振检测效果。数值仿真、实验数据及工程实际应用均验证了该方法的有效性。展开更多
文摘旋转叶片是航空发动机的关键易损件,需要对其进行状态监测。叶端定时(Blade tip timing,BTT)是一种有效的旋转叶片非接触监测方法。然而,传统的叶端定时严重依赖键相信号,叶端定时信号存在严重的欠采样问题。对此,提出了一种基于叶片振动差的正交匹配追踪(Orthogonal matching pursuit,OMP)方法来提取叶片固有频率。首先,使用叶端定时传感器计算叶片振动差。然后,构建叶片振动差的稀疏模型,在变转速情况下使用正交匹配追踪方法对叶片振动差信号进行分解,提取叶片振动振幅和固有频率。通过数值仿真验证了该方法的有效性和鲁棒性,并在叶端定时试验台上进行试验。结果表明,该方法可以准确识别叶片异步振动的振幅和固有频率。
文摘叶端定时是航空发动机叶片叶端振动非接触测量的有效手段,但其采样模式决定了所采信号具有高度欠采样特征,需要进行抗混叠频谱分析从而提取转子叶片固有频率这一关键指标。利用了前向平滑策略的改进多重信号分类法(multiple sIgnal classification,MUSIC)能实现抗混叠但无法充分发挥平滑方法的优势。因此,提出适用于叶端定时信号处理的前后向平滑MUSIC法,通过建立传感器的对称布局条件,利用前后向平滑方法代替前向平滑方法,得到更准确的自相关矩阵估计,进而提高叶片固有频率估计性能,并通过仿真和试验验证了在样本数量、算法参数等相同的情况下,前后向平滑MUSIC法的混叠与噪声抑制能力得到了提升。
文摘经典双稳态随机共振系统通过各种参数地调节可实现噪声、周期信号及非线性双稳态系统的最佳匹配从而实现随机共振,促使系统输出的微弱周期分量得到了一定的噪声能量而达到增强的效果,从而有效检测出微弱的周期分量,但噪声能量利用有限,系统响应中仍存在一定的噪声能量。二阶随机共振增强的系统模型,借助“双重积分”实现噪声的重复利用,将噪声进行二次利用,有效促进高频噪声能量进一步转移到低频区域,有效提高输出响应的信噪比。考虑到多尺度带限噪声对随机共振的影响,并基于随机共振特殊低通滤波器的数学本质,提出了以协同信噪比(collaborative signal to noise ratio,CSNR)为目标函数,基于Paul小波的自适应多尺度噪声调节二阶随机共振增强方法,充分利用了小波的多分辨时频分析能力,将输入信号和噪声划分到不同频带,实现了不同频带信号和噪声强度大小的控制,以进一步改善随机共振检测效果。数值仿真、实验数据及工程实际应用均验证了该方法的有效性。