机动飞行条件下高速转子系统会同时受到环境载荷以及转子自身的共同激励而产生强烈的强迫响应。为研究其复杂的振动特性,本文采用Vold-Kalman滤波(Vold-Kalman Filter,VKF)对不同基础运动激励下转子系统的实测振动信号进行阶次跟踪滤波...机动飞行条件下高速转子系统会同时受到环境载荷以及转子自身的共同激励而产生强烈的强迫响应。为研究其复杂的振动特性,本文采用Vold-Kalman滤波(Vold-Kalman Filter,VKF)对不同基础运动激励下转子系统的实测振动信号进行阶次跟踪滤波。为验证VKF的有效性及参数设置的可靠性,通过转子动力特性计算生成系统响应的仿真信号,并通过加噪处理模拟测量信号,然后通过VKF提取目标阶次的时域波形。通过陀螺运动转子动力学试验,测得不同基础转动激起的系统振动响应,组合使用VKF和计算阶次跟踪(Computed Order Tracking,COT)提取并分离了转子转频信号和基础低频信号的时域和阶次信息。结果表明,单轴滚转或俯仰运动均会激起与其频率一致的低频振动响应,且滚转、俯仰角速度的大小会影响该低频信号的幅值大小;随着基础运动角速度的变化,转子前四阶振动分量没有发生明显的变化,而基础运动频率与转频之间的频带区域有显著变化。此方法有效地提升了机动飞行下转子支承系统振动信号处理与分析的准确度和效率,降低了信号噪声。展开更多
二氧化钛(Ti O2)作为有前景的钠离子电池负极材料,具有良好的循环稳定性,但由于其导电率较低,而导致容量和倍率性能不佳限制了其实际应用.本文采用喷雾干燥技术制备了氧化石墨烯/纳米Ti O2复合材料(GO/Ti O2),通过热处理获得还原氧化石...二氧化钛(Ti O2)作为有前景的钠离子电池负极材料,具有良好的循环稳定性,但由于其导电率较低,而导致容量和倍率性能不佳限制了其实际应用.本文采用喷雾干燥技术制备了氧化石墨烯/纳米Ti O2复合材料(GO/Ti O2),通过热处理获得还原氧化石墨烯/Ti O2复合材料(RGO/Ti O2).电化学测试结果表明,还原氧化石墨烯改性的RGO/Ti O2复合材料的电化学性能得到显著提升,RGO含量为4.0%(w)的RGO/Ti O2复合材料在各种电流密度下的可逆容量分别为183.7 m Ah?g-1(20 m A?g-1),153.7 m Ah?g-1(100 m A?g-1)和114.4 m Ah?g-1(600m A?g-1),而纯Ti O2的比容量仅为93.6 m Ah?g-1(20 m A?g-1),69.6 m Ah?g-1(100 m A?g-1)和26.5 m Ah?g-1(600m A?g-1).4.0%(w)RGO/Ti O2复合材料体现了良好的循环稳定性,在100 m A?g-1电流密度下充放电循环350个周期后,比容量仍然保持146.7 m Ah?g-1.同等条件下,纯Ti O2电极比容量只有68.8 m Ah?g-1.RGO包覆改性极大提高了Ti O2在钠离子电池中的电化学嵌钠/脱钠性能.RGO包覆改性技术在改进钠离子电池材料性能中将有很好的应用前景.展开更多
文摘机动飞行条件下高速转子系统会同时受到环境载荷以及转子自身的共同激励而产生强烈的强迫响应。为研究其复杂的振动特性,本文采用Vold-Kalman滤波(Vold-Kalman Filter,VKF)对不同基础运动激励下转子系统的实测振动信号进行阶次跟踪滤波。为验证VKF的有效性及参数设置的可靠性,通过转子动力特性计算生成系统响应的仿真信号,并通过加噪处理模拟测量信号,然后通过VKF提取目标阶次的时域波形。通过陀螺运动转子动力学试验,测得不同基础转动激起的系统振动响应,组合使用VKF和计算阶次跟踪(Computed Order Tracking,COT)提取并分离了转子转频信号和基础低频信号的时域和阶次信息。结果表明,单轴滚转或俯仰运动均会激起与其频率一致的低频振动响应,且滚转、俯仰角速度的大小会影响该低频信号的幅值大小;随着基础运动角速度的变化,转子前四阶振动分量没有发生明显的变化,而基础运动频率与转频之间的频带区域有显著变化。此方法有效地提升了机动飞行下转子支承系统振动信号处理与分析的准确度和效率,降低了信号噪声。
文摘二氧化钛(Ti O2)作为有前景的钠离子电池负极材料,具有良好的循环稳定性,但由于其导电率较低,而导致容量和倍率性能不佳限制了其实际应用.本文采用喷雾干燥技术制备了氧化石墨烯/纳米Ti O2复合材料(GO/Ti O2),通过热处理获得还原氧化石墨烯/Ti O2复合材料(RGO/Ti O2).电化学测试结果表明,还原氧化石墨烯改性的RGO/Ti O2复合材料的电化学性能得到显著提升,RGO含量为4.0%(w)的RGO/Ti O2复合材料在各种电流密度下的可逆容量分别为183.7 m Ah?g-1(20 m A?g-1),153.7 m Ah?g-1(100 m A?g-1)和114.4 m Ah?g-1(600m A?g-1),而纯Ti O2的比容量仅为93.6 m Ah?g-1(20 m A?g-1),69.6 m Ah?g-1(100 m A?g-1)和26.5 m Ah?g-1(600m A?g-1).4.0%(w)RGO/Ti O2复合材料体现了良好的循环稳定性,在100 m A?g-1电流密度下充放电循环350个周期后,比容量仍然保持146.7 m Ah?g-1.同等条件下,纯Ti O2电极比容量只有68.8 m Ah?g-1.RGO包覆改性极大提高了Ti O2在钠离子电池中的电化学嵌钠/脱钠性能.RGO包覆改性技术在改进钠离子电池材料性能中将有很好的应用前景.